{"title":"Equivalent Parameters of Metal-Elastomer Vibroinsulators","authors":"G. Cieplok, Kaja Wojcik, K. Michalczyk, W. Sikora","doi":"10.21008/J.0860-6897.2020.2.04","DOIUrl":null,"url":null,"abstract":"This paper concerns a substitute model of the metal-elastomer vibroinsulator that can find use in the mathematical description of vibration machine suspensions. In the case of a plane system, the flexibility matrix of the vibroinsulator was derived and two typical configurations of machine suspensions: symmetrical and asymmetrical, were analysed. For the case of a spatial motion, the elastic matrix of the vibroinsulator and the method of determining its elements was specified. Due to the non-linear character of the vibroinsulator's work, which is caused by large deformations of elastomeric elements under static loads, the analysis was limited to the surroundings of the work point and linear model. The results of theoretical analyses were confirmed by experimental tests.","PeriodicalId":38508,"journal":{"name":"Vibrations in Physical Systems","volume":"31 1","pages":"2020204-1-2020204-13"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vibrations in Physical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21008/J.0860-6897.2020.2.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1
Abstract
This paper concerns a substitute model of the metal-elastomer vibroinsulator that can find use in the mathematical description of vibration machine suspensions. In the case of a plane system, the flexibility matrix of the vibroinsulator was derived and two typical configurations of machine suspensions: symmetrical and asymmetrical, were analysed. For the case of a spatial motion, the elastic matrix of the vibroinsulator and the method of determining its elements was specified. Due to the non-linear character of the vibroinsulator's work, which is caused by large deformations of elastomeric elements under static loads, the analysis was limited to the surroundings of the work point and linear model. The results of theoretical analyses were confirmed by experimental tests.