{"title":"Decay in prepulse facilitation of calcium channel currents by Gi/o-protein attenuation in hamster submandibular ganglion neurons, but not Gq/11.","authors":"T. Endoh, M. Abe, T. Suzuki","doi":"10.2209/TDCPUBLICATION.42.235","DOIUrl":null,"url":null,"abstract":"The calcium ion influx through voltage-dependent calcium channels (VDCCs) has a vital role in the control of neurotransmitter release and membrane excitability. Prepulse facilitation is a phenomenon in which a strong depolarizing pulse induces a form of the VDCCs that exhibits an increased opening probability in response to a given test potential; this persists for several seconds after repolarization. It has been reported that prepulse facilitation occurs via dissociation of the guanosine triphosphate (GTP)-binding proteins (G-proteins) from the VDCCs and that recovery from facilitation involves rebinding of the G-proteins. The heterotrimeric G-proteins act as switches that regulate information processing circuits connecting cell surface G-protein-coupled-receptors to a variety of effectors. In this study, we have studied the characterization of G-protein subtypes in prepulse facilitation of VDCCs currents (Ica) in hamster submandibular ganglion (SMG) neurons, using whole-cell patch clamp recordings. Under control conditions, with GTP (0.1 mM) in the recording pipette, the rate of prepulse facilitation was 19.0 +/- 1.9% (n = 13). Intracellular dialysis with GDP-beta-S (0.1 mM), G-protein blocker, and pretreatment of neurons with N-ethylmaleimide (NEM) (100 microM for 2 min), Gi/o blocker, attenuated the rate of prepulse facilitation. Intracellular dialysis of anti-Gq/11-antibody did not alter it. These results suggest that prepulse facilitation of VDCCs is due to Gi/o-types of G-protein, but not to the Gq/11-type, in SMG neurons.","PeriodicalId":45490,"journal":{"name":"Bulletin of Tokyo Dental College","volume":"61 1","pages":"235-41"},"PeriodicalIF":0.5000,"publicationDate":"2001-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Tokyo Dental College","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2209/TDCPUBLICATION.42.235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 1
Abstract
The calcium ion influx through voltage-dependent calcium channels (VDCCs) has a vital role in the control of neurotransmitter release and membrane excitability. Prepulse facilitation is a phenomenon in which a strong depolarizing pulse induces a form of the VDCCs that exhibits an increased opening probability in response to a given test potential; this persists for several seconds after repolarization. It has been reported that prepulse facilitation occurs via dissociation of the guanosine triphosphate (GTP)-binding proteins (G-proteins) from the VDCCs and that recovery from facilitation involves rebinding of the G-proteins. The heterotrimeric G-proteins act as switches that regulate information processing circuits connecting cell surface G-protein-coupled-receptors to a variety of effectors. In this study, we have studied the characterization of G-protein subtypes in prepulse facilitation of VDCCs currents (Ica) in hamster submandibular ganglion (SMG) neurons, using whole-cell patch clamp recordings. Under control conditions, with GTP (0.1 mM) in the recording pipette, the rate of prepulse facilitation was 19.0 +/- 1.9% (n = 13). Intracellular dialysis with GDP-beta-S (0.1 mM), G-protein blocker, and pretreatment of neurons with N-ethylmaleimide (NEM) (100 microM for 2 min), Gi/o blocker, attenuated the rate of prepulse facilitation. Intracellular dialysis of anti-Gq/11-antibody did not alter it. These results suggest that prepulse facilitation of VDCCs is due to Gi/o-types of G-protein, but not to the Gq/11-type, in SMG neurons.