{"title":"Are Estrogen Receptor Genomic Aberrations Predictive of Hormone Therapy Response in Breast Cancer?","authors":"S. Tabarestani, M. Motallebi, M. Akbari","doi":"10.17795/ijcp-6565","DOIUrl":null,"url":null,"abstract":"Context Breast cancer is the most common cancer in women worldwide. Estrogen receptor (ER) positive breast cancer constitutes the majority of these cancers. Hormone therapy has significantly improved clinical outcomes for early- and late-stage hormone receptor positive breast cancer. Although most patients with early stage breast cancer are treated with curative intent, approximately 20% - 30% of patients eventually experience a recurrence. During the last two decades, there have been tremendous efforts to understand the biological mechanisms of hormone therapy resistance, with the ultimate goal of implementing new therapeutic strategies to improve the current treatments for ER positive breast cancer. Several mechanisms of hormone therapy resistance have been proposed, including genetic alterations that lead to altered ER expression or ERs with changed protein sequence. Evidence Acquisition A Pubmed search was performed utilizing various related terms. Articles over the past 20 years were analyzed and selected for review. Results On the basis of published studies, the frequencies of ESR1 (the gene encoding ER) mutations in ER positive metastatic breast cancer range from 11% to 55%. Future larger prospective studies with standardized mutation detection methods may be necessary to determine the true incidence of ESR1 mutations. ESR1 amplification in breast cancer remains a controversial issue, with numerous studies either confirmed or challenged the reports of ESR1 amplification. The combination of intra-tumor heterogeneity regarding ESR1 copy number alterations and low level ESR1 copy number increase may account for these discrepancies. Conclusions While numerous unknown issues on the role of ESR1 mutations in advanced breast cancer remain, these new findings will certainly deepen current knowledge on molecular evolution of breast cancer and acquired resistance to hormone therapy.","PeriodicalId":73510,"journal":{"name":"Iranian journal of cancer prevention","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian journal of cancer prevention","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17795/ijcp-6565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
Context Breast cancer is the most common cancer in women worldwide. Estrogen receptor (ER) positive breast cancer constitutes the majority of these cancers. Hormone therapy has significantly improved clinical outcomes for early- and late-stage hormone receptor positive breast cancer. Although most patients with early stage breast cancer are treated with curative intent, approximately 20% - 30% of patients eventually experience a recurrence. During the last two decades, there have been tremendous efforts to understand the biological mechanisms of hormone therapy resistance, with the ultimate goal of implementing new therapeutic strategies to improve the current treatments for ER positive breast cancer. Several mechanisms of hormone therapy resistance have been proposed, including genetic alterations that lead to altered ER expression or ERs with changed protein sequence. Evidence Acquisition A Pubmed search was performed utilizing various related terms. Articles over the past 20 years were analyzed and selected for review. Results On the basis of published studies, the frequencies of ESR1 (the gene encoding ER) mutations in ER positive metastatic breast cancer range from 11% to 55%. Future larger prospective studies with standardized mutation detection methods may be necessary to determine the true incidence of ESR1 mutations. ESR1 amplification in breast cancer remains a controversial issue, with numerous studies either confirmed or challenged the reports of ESR1 amplification. The combination of intra-tumor heterogeneity regarding ESR1 copy number alterations and low level ESR1 copy number increase may account for these discrepancies. Conclusions While numerous unknown issues on the role of ESR1 mutations in advanced breast cancer remain, these new findings will certainly deepen current knowledge on molecular evolution of breast cancer and acquired resistance to hormone therapy.