On the a b c $abc$ conjecture in algebraic number fields

IF 0.8 3区 数学 Q2 MATHEMATICS
Mathematika Pub Date : 2023-10-26 DOI:10.1112/mtk.12230
Andrew Scoones
{"title":"On the \n \n \n a\n b\n c\n \n $abc$\n conjecture in algebraic number fields","authors":"Andrew Scoones","doi":"10.1112/mtk.12230","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we prove a weak form of the <math>\n <semantics>\n <mrow>\n <mi>a</mi>\n <mi>b</mi>\n <mi>c</mi>\n </mrow>\n <annotation>$abc$</annotation>\n </semantics></math> conjecture generalised to algebraic number fields. Given integers satisfying <math>\n <semantics>\n <mrow>\n <mi>a</mi>\n <mo>+</mo>\n <mi>b</mi>\n <mo>=</mo>\n <mi>c</mi>\n </mrow>\n <annotation>$a+b=c$</annotation>\n </semantics></math>, Stewart and Yu were able to give an exponential bound in terms of the radical over the integers (Stewart and Yu [Math. Ann. <b>291</b> (1991), 225–230], Stewart and Yu [Duke Math. J. <b>108</b> (2001), no. 1, 169–181]), whereas Győry was able to give an exponential bound in the algebraic number field case for the projective height <math>\n <semantics>\n <mrow>\n <msub>\n <mi>H</mi>\n <mi>K</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>a</mi>\n <mo>,</mo>\n <mspace></mspace>\n <mi>b</mi>\n <mo>,</mo>\n <mspace></mspace>\n <mi>c</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$H_{K}(a,\\,b,\\,c)$</annotation>\n </semantics></math> in terms of the radical for algebraic numbers (Győry [Acta Arith. <b>133</b> (2008), 281–295]). We generalise Stewart and Yu's method to give an improvement on Győry's bound for algebraic integers over the Hilbert Class Field of the initial number field <i>K</i>. Given algebraic integers <math>\n <semantics>\n <mrow>\n <mi>a</mi>\n <mo>,</mo>\n <mspace></mspace>\n <mi>b</mi>\n <mo>,</mo>\n <mspace></mspace>\n <mi>c</mi>\n </mrow>\n <annotation>$a,\\,b,\\,c$</annotation>\n </semantics></math> in a number field <i>K</i> satisfying <math>\n <semantics>\n <mrow>\n <mi>a</mi>\n <mo>+</mo>\n <mi>b</mi>\n <mo>=</mo>\n <mi>c</mi>\n </mrow>\n <annotation>$a+b=c$</annotation>\n </semantics></math>, we give an upper bound for the logarithm of the projective height <math>\n <semantics>\n <mrow>\n <msub>\n <mi>H</mi>\n <mi>L</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>a</mi>\n <mo>,</mo>\n <mspace></mspace>\n <mi>b</mi>\n <mo>,</mo>\n <mspace></mspace>\n <mi>c</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$H_{L}(a,\\,b,\\,c)$</annotation>\n </semantics></math> in terms of norms of prime ideals dividing <math>\n <semantics>\n <mrow>\n <mi>a</mi>\n <mi>b</mi>\n <mi>c</mi>\n <msub>\n <mi>O</mi>\n <mi>L</mi>\n </msub>\n </mrow>\n <annotation>$abc \\mathcal {O}_{L}$</annotation>\n </semantics></math>, where <i>L</i> is the Hilbert Class Field of <i>K</i>. In many cases, this allows us to give a bound in terms of the modified radical <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n <mo>:</mo>\n <mo>=</mo>\n <mi>G</mi>\n <mo>(</mo>\n <mi>a</mi>\n <mo>,</mo>\n <mspace></mspace>\n <mi>b</mi>\n <mo>,</mo>\n <mspace></mspace>\n <mi>c</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$G:=G(a,\\,b,\\,c)$</annotation>\n </semantics></math> as given by Masser (Proc. Amer. Math. Soc. <b>130</b> (2002), no. 11, 3141–3150). Furthermore, by employing a recent bound of Győry (Publ. Math. Debrecen <b>94</b> (2019), 507–526) on the solutions of <i>S</i>-unit equations, our estimates imply the upper bound\n\n </p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12230","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematika","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12230","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we prove a weak form of the a b c $abc$ conjecture generalised to algebraic number fields. Given integers satisfying a + b = c $a+b=c$ , Stewart and Yu were able to give an exponential bound in terms of the radical over the integers (Stewart and Yu [Math. Ann. 291 (1991), 225–230], Stewart and Yu [Duke Math. J. 108 (2001), no. 1, 169–181]), whereas Győry was able to give an exponential bound in the algebraic number field case for the projective height H K ( a , b , c ) $H_{K}(a,\,b,\,c)$ in terms of the radical for algebraic numbers (Győry [Acta Arith. 133 (2008), 281–295]). We generalise Stewart and Yu's method to give an improvement on Győry's bound for algebraic integers over the Hilbert Class Field of the initial number field K. Given algebraic integers a , b , c $a,\,b,\,c$ in a number field K satisfying a + b = c $a+b=c$ , we give an upper bound for the logarithm of the projective height H L ( a , b , c ) $H_{L}(a,\,b,\,c)$ in terms of norms of prime ideals dividing a b c O L $abc \mathcal {O}_{L}$ , where L is the Hilbert Class Field of K. In many cases, this allows us to give a bound in terms of the modified radical G : = G ( a , b , c ) $G:=G(a,\,b,\,c)$ as given by Masser (Proc. Amer. Math. Soc. 130 (2002), no. 11, 3141–3150). Furthermore, by employing a recent bound of Győry (Publ. Math. Debrecen 94 (2019), 507–526) on the solutions of S-unit equations, our estimates imply the upper bound

Abstract Image

代数数域中的a b-c$abc$猜想
本文证明了推广到代数数域的bc$abc$猜想的一个弱形式。给定满足a+b=c$a+b=c$的整数,Stewart和Yu能够根据整数上的根给出指数界(Stewart and Yu[Math.Ann.291(1991),225–230],Stewart和Yu[Duck Math.J.108(2001),no.1169-181]),而Gyõry在代数数域的情况下能够给出投影高度H K的指数界(a,b,c)$H_{K}(a,\,b,\,c)$用代数数的根表示(Gyõry[Acta Arith.133(2008),281–295])。我们推广了Stewart和Yu的方法,改进了初始数域K的Hilbert类域上代数整数的Györy界,满足a+b=c$a+b+c$的数字域K中的c$a,\,b,\,c$,我们给出了投影高度H L对数的一个上界(a,b,c)$H_{L}(a,\,b,\,c)$关于素数理想的范数b c O L$abc\mathcal{O}_{L} $,其中L是K的Hilbert类域。在许多情况下,这允许我们给出一个关于修饰基团G:=G(a,b,c)的界$G:=G(a,\,b,\,c)$,由Masser给出(Proc.Amer.Math.Soc.130(2002),no.113141-3150)。此外,通过使用Gyõry(Publ.Math.Debrecen 94(2019),507-526)关于S单元方程解的最近界,我们的估计暗示了上界
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematika
Mathematika MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.40
自引率
0.00%
发文量
60
审稿时长
>12 weeks
期刊介绍: Mathematika publishes both pure and applied mathematical articles and has done so continuously since its founding by Harold Davenport in the 1950s. The traditional emphasis has been towards the purer side of mathematics but applied mathematics and articles addressing both aspects are equally welcome. The journal is published by the London Mathematical Society, on behalf of its owner University College London, and will continue to publish research papers of the highest mathematical quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信