Intrinsic Justifications for Large-Cardinal Axioms

IF 0.8 1区 哲学 Q2 HISTORY & PHILOSOPHY OF SCIENCE
Rupert McCallum
{"title":"Intrinsic Justifications for Large-Cardinal Axioms","authors":"Rupert McCallum","doi":"10.1093/philmat/nkaa038","DOIUrl":null,"url":null,"abstract":"We shall defend three philosophical theses about the extent of intrinsic justification based on various technical results. We shall present a set of theorems which indicate intriguing structural similarities between a family of “weak” reflection principles roughly at the level of those considered by Tait and Koellner and a family of “strong” reflection principles roughly at the level of those of Welch and Roberts, which we claim to lend support to the view that the stronger reflection principles are intrinsically justified as well as the weaker ones. We consider connections with earlier work of Marshall.","PeriodicalId":49004,"journal":{"name":"Philosophia Mathematica","volume":"29 1","pages":"195-213"},"PeriodicalIF":0.8000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/philmat/nkaa038","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophia Mathematica","FirstCategoryId":"98","ListUrlMain":"https://ieeexplore.ieee.org/document/9520873/","RegionNum":1,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HISTORY & PHILOSOPHY OF SCIENCE","Score":null,"Total":0}
引用次数: 1

Abstract

We shall defend three philosophical theses about the extent of intrinsic justification based on various technical results. We shall present a set of theorems which indicate intriguing structural similarities between a family of “weak” reflection principles roughly at the level of those considered by Tait and Koellner and a family of “strong” reflection principles roughly at the level of those of Welch and Roberts, which we claim to lend support to the view that the stronger reflection principles are intrinsically justified as well as the weaker ones. We consider connections with earlier work of Marshall.
大基数公理的内在证明
基于各种技术结果,我们将为三篇关于内在正当性程度的哲学论文辩护。我们将提出一组定理,这些定理表明大致处于Tait和Koellner所考虑的“弱”反射原理族与大致处于Welch和Roberts所考虑的水平的“强”反射原则族之间有趣的结构相似性,我们声称这支持了这样一种观点,即更强的反思原则与较弱的反思原则在本质上都是合理的。我们认为这与马歇尔早期的工作有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Philosophia Mathematica
Philosophia Mathematica HISTORY & PHILOSOPHY OF SCIENCE-
CiteScore
1.70
自引率
9.10%
发文量
26
审稿时长
>12 weeks
期刊介绍: Philosophia Mathematica is the only journal in the world devoted specifically to philosophy of mathematics. The journal publishes peer-reviewed new work in philosophy of mathematics, the application of mathematics, and computing. In addition to main articles, sometimes grouped on a single theme, there are shorter discussion notes, letters, and book reviews. The journal is published online-only, with three issues published per year.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信