Yujie Ke, Jingwei Chen, Gaojian Lin, Shancheng Wang, Yang Zhou, Jie Yin, Pooi See Lee, Yi Long
{"title":"Smart Windows: Electro-, Thermo-, Mechano-, Photochromics, and Beyond","authors":"Yujie Ke, Jingwei Chen, Gaojian Lin, Shancheng Wang, Yang Zhou, Jie Yin, Pooi See Lee, Yi Long","doi":"10.1002/aenm.201902066","DOIUrl":null,"url":null,"abstract":"<p>A smart window that dynamically modulates light transmittance is crucial for building energy efficiently, and promising for on-demand optical devices. The rapid development of technology brings out different categories that have fundamentally different transmittance modulation mechanisms, including the electro-, thermo-, mechano-, and photochromic smart windows. In this review, recent progress in smart windows of each category is overviewed. The strategies for each smart window are outlined with particular focus on functional materials, device design, and performance enhancement. The advantages and disadvantages of each category are summarized, followed by a discussion of emerging technologies such as dual stimuli triggered smart window and integrated devices toward multifunctionality. These multifunctional devices combine smart window technology with, for example, solar cells, triboelectric nanogenerators, actuators, energy storage devices, and electrothermal devices. Lastly, a perspective is provided on the future development of smart windows.</p>","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"9 39","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2019-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/aenm.201902066","citationCount":"391","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aenm.201902066","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 391
Abstract
A smart window that dynamically modulates light transmittance is crucial for building energy efficiently, and promising for on-demand optical devices. The rapid development of technology brings out different categories that have fundamentally different transmittance modulation mechanisms, including the electro-, thermo-, mechano-, and photochromic smart windows. In this review, recent progress in smart windows of each category is overviewed. The strategies for each smart window are outlined with particular focus on functional materials, device design, and performance enhancement. The advantages and disadvantages of each category are summarized, followed by a discussion of emerging technologies such as dual stimuli triggered smart window and integrated devices toward multifunctionality. These multifunctional devices combine smart window technology with, for example, solar cells, triboelectric nanogenerators, actuators, energy storage devices, and electrothermal devices. Lastly, a perspective is provided on the future development of smart windows.
期刊介绍:
Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small.
With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics.
The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.