{"title":"Effects of Demographic Characteristics on Trust in Driving Automation","authors":"Jieun Lee, G. Abe, Kenji Sato, M. Itoh","doi":"10.20965/jrm.2020.p0605","DOIUrl":null,"url":null,"abstract":"With the successful introduction of advanced driver assistance systems, vehicles with driving automation technologies have begun to be released onto the market. Because the role of human drivers during automated driving may be different from the role of drivers with assistance systems, it is important to determine how general users consider such new technologies. The current study has attempted to consider driver trust, which plays a critical role in forming users’ technology acceptance. In a driving simulator experiment, the demographic information of 56 drivers (50% female, 64% student, and 53% daily driver) was analyzed with respect to Lee and Moray’s three dimensions of trust: purpose, process, and performance. The statistical results revealed that female drivers were more likely to rate higher levels of trust than males, and non-student drivers exhibited higher levels of trust than student drivers. However, no driving frequency-related difference was observed. The driver ratings of each trust dimension were neutral to moderate, but purpose-related trust was lower than process- and performance-related trust. Additionally, student drivers exhibited a tendency to distrust automation compared to non-student drivers. The findings present a potential perspective of driver acceptability of current automated vehicles.","PeriodicalId":51661,"journal":{"name":"Journal of Robotics and Mechatronics","volume":"32 1","pages":"605-612"},"PeriodicalIF":0.9000,"publicationDate":"2020-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Robotics and Mechatronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/jrm.2020.p0605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 6
Abstract
With the successful introduction of advanced driver assistance systems, vehicles with driving automation technologies have begun to be released onto the market. Because the role of human drivers during automated driving may be different from the role of drivers with assistance systems, it is important to determine how general users consider such new technologies. The current study has attempted to consider driver trust, which plays a critical role in forming users’ technology acceptance. In a driving simulator experiment, the demographic information of 56 drivers (50% female, 64% student, and 53% daily driver) was analyzed with respect to Lee and Moray’s three dimensions of trust: purpose, process, and performance. The statistical results revealed that female drivers were more likely to rate higher levels of trust than males, and non-student drivers exhibited higher levels of trust than student drivers. However, no driving frequency-related difference was observed. The driver ratings of each trust dimension were neutral to moderate, but purpose-related trust was lower than process- and performance-related trust. Additionally, student drivers exhibited a tendency to distrust automation compared to non-student drivers. The findings present a potential perspective of driver acceptability of current automated vehicles.
期刊介绍:
First published in 1989, the Journal of Robotics and Mechatronics (JRM) has the longest publication history in the world in this field, publishing a total of over 2,000 works exclusively on robotics and mechatronics from the first number. The Journal publishes academic papers, development reports, reviews, letters, notes, and discussions. The JRM is a peer-reviewed journal in fields such as robotics, mechatronics, automation, and system integration. Its editorial board includes wellestablished researchers and engineers in the field from the world over. The scope of the journal includes any and all topics on robotics and mechatronics. As a key technology in robotics and mechatronics, it includes actuator design, motion control, sensor design, sensor fusion, sensor networks, robot vision, audition, mechanism design, robot kinematics and dynamics, mobile robot, path planning, navigation, SLAM, robot hand, manipulator, nano/micro robot, humanoid, service and home robots, universal design, middleware, human-robot interaction, human interface, networked robotics, telerobotics, ubiquitous robot, learning, and intelligence. The scope also includes applications of robotics and automation, and system integrations in the fields of manufacturing, construction, underwater, space, agriculture, sustainability, energy conservation, ecology, rescue, hazardous environments, safety and security, dependability, medical, and welfare.