Early Stage DRC Prediction Using Ensemble Machine Learning Algorithms

IF 2.1 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Riadul Islam
{"title":"Early Stage DRC Prediction Using Ensemble Machine Learning Algorithms","authors":"Riadul Islam","doi":"10.1109/ICJECE.2022.3200075","DOIUrl":null,"url":null,"abstract":"At leading technology nodes, the industry is facing a stiff challenge to make profitable integrated circuits (ICs). One of the primary issues is the design rule checking (DRC) violation. This research cohort with the DARPA IDEA program aims for “no-human-in-the-loop” and 24-h turnaround time to implement an IC from design specifications. In order to reduce human effort, this work introduces the ensemble random forest, gradient boosting, and Adaboost algorithms to predict DRC violations before detailed routing, which is considered the most time-consuming step in an IC design flow. In addition, this work identifies the features that critically impact DRC violations. The proposed algorithm has a 2% better F1-score compared to the existing support-vector machine (SVM) classifiers. The proposed ensemble approach has up to an area-under-the-curve–receiver operating characteristics (AUC–ROC) curve mean of 0.940 with ± 0.011 standard deviation compared to the state-of-the-art SVM classifier with an AUC–ROC curve mean of 0.854 with ± 0.01 standard deviation. The proposed ensemble approach exhibits up to 28.7% better DRC violation prediction rate compared to those using SVM algorithms on the test data. In addition, the proposed gradient boosting algorithm requires \n<inline-formula> <tex-math>$37.5\\times $ </tex-math></inline-formula>\n lower average training time and \n<inline-formula> <tex-math>$50\\times $ </tex-math></inline-formula>\n lower average testing time compared to the existing SVM methodologies.","PeriodicalId":100619,"journal":{"name":"IEEE Canadian Journal of Electrical and Computer Engineering","volume":"45 4","pages":"354-364"},"PeriodicalIF":2.1000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Canadian Journal of Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9917250/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

At leading technology nodes, the industry is facing a stiff challenge to make profitable integrated circuits (ICs). One of the primary issues is the design rule checking (DRC) violation. This research cohort with the DARPA IDEA program aims for “no-human-in-the-loop” and 24-h turnaround time to implement an IC from design specifications. In order to reduce human effort, this work introduces the ensemble random forest, gradient boosting, and Adaboost algorithms to predict DRC violations before detailed routing, which is considered the most time-consuming step in an IC design flow. In addition, this work identifies the features that critically impact DRC violations. The proposed algorithm has a 2% better F1-score compared to the existing support-vector machine (SVM) classifiers. The proposed ensemble approach has up to an area-under-the-curve–receiver operating characteristics (AUC–ROC) curve mean of 0.940 with ± 0.011 standard deviation compared to the state-of-the-art SVM classifier with an AUC–ROC curve mean of 0.854 with ± 0.01 standard deviation. The proposed ensemble approach exhibits up to 28.7% better DRC violation prediction rate compared to those using SVM algorithms on the test data. In addition, the proposed gradient boosting algorithm requires $37.5\times $ lower average training time and $50\times $ lower average testing time compared to the existing SVM methodologies.
基于集成机器学习算法的早期DRC预测
在领先的技术节点上,该行业面临着制造盈利集成电路(IC)的严峻挑战。主要问题之一是违反设计规则检查(DRC)。DARPA IDEA项目的这一研究团队旨在实现“无人参与”和24小时的周转时间,以根据设计规范实现IC。为了减少人力,这项工作引入了集成随机森林、梯度增强和Adaboost算法,以在详细路由之前预测DRC违规,这被认为是IC设计流程中最耗时的步骤。此外,这项工作还确定了严重影响DRC违规行为的特征。与现有的支持向量机(SVM)分类器相比,所提出的算法的F1分数提高了2%。与AUC–ROC曲线平均值为0.854、标准偏差为±0.01的最先进SVM分类器相比,所提出的集成方法的曲线下面积-受试者操作特征(AUC–ROC)曲线平均值高达0.940,标准偏差为?.011。与在测试数据上使用SVM算法的方法相比,所提出的集成方法显示出高达28.7%的DRC违规预测率。此外,与现有的SVM方法相比,所提出的梯度增强算法需要低37.5倍的平均训练时间和50倍的平均测试时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信