Arm Energy Investigation and Submodule Capacitor Sizing for the Asymmetric Alternate Arm Converter Topology

Dereje Woldegiorgis;H. Alan Mantooth
{"title":"Arm Energy Investigation and Submodule Capacitor Sizing for the Asymmetric Alternate Arm Converter Topology","authors":"Dereje Woldegiorgis;H. Alan Mantooth","doi":"10.24295/CPSSTPEA.2023.00019","DOIUrl":null,"url":null,"abstract":"This paper presents the arm energy model and submodule capacitance sizing of the asymmetric alternate arm converter (AAAC) topology that has been recently proposed for high voltage DC (HVDC) applications. A step-by-step derivation of the converter arm energy model is presented to arrive at a final arm energy expression that aids to determine the maximum arm energy deviation of the converter that is required to determine the minimum submodule capacitance of the converter. A simplified mathematical expression is also derived to help determine the required submodule capacitance for the converter from the maximum arm energy deviation, the number of submodules per converter arm and the maximum allowed submodule capacitor voltage deviation (ripple factor). The derived arm energy expression is validated using both simulation and experimental results. The calculated, the simulated, and the experimentally measured converter arm energy values have a good match with each other verifying the accuracy of the derived converter arm energy model. In addition, comparison of the energy storage requirements of the AAAC topology with other similar converter topologies such as the conventional (symmetric) alternate arm converter topology and the modular multilevel converter topology is provided to further highlight the significance of the derived converter arm energy and submodule capacitance sizing expressions.","PeriodicalId":100339,"journal":{"name":"CPSS Transactions on Power Electronics and Applications","volume":"8 2","pages":"190-198"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/7873541/10177876/10122797.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CPSS Transactions on Power Electronics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10122797/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the arm energy model and submodule capacitance sizing of the asymmetric alternate arm converter (AAAC) topology that has been recently proposed for high voltage DC (HVDC) applications. A step-by-step derivation of the converter arm energy model is presented to arrive at a final arm energy expression that aids to determine the maximum arm energy deviation of the converter that is required to determine the minimum submodule capacitance of the converter. A simplified mathematical expression is also derived to help determine the required submodule capacitance for the converter from the maximum arm energy deviation, the number of submodules per converter arm and the maximum allowed submodule capacitor voltage deviation (ripple factor). The derived arm energy expression is validated using both simulation and experimental results. The calculated, the simulated, and the experimentally measured converter arm energy values have a good match with each other verifying the accuracy of the derived converter arm energy model. In addition, comparison of the energy storage requirements of the AAAC topology with other similar converter topologies such as the conventional (symmetric) alternate arm converter topology and the modular multilevel converter topology is provided to further highlight the significance of the derived converter arm energy and submodule capacitance sizing expressions.
不对称交替臂变换器拓扑的臂能量研究和子模块电容器的确定
本文介绍了最近提出的用于高压直流(HVDC)应用的不对称交流臂变换器(AAAC)拓扑的臂能量模型和子模块电容大小。提出了转换器臂能量模型的逐步推导,以得出最终的臂能量表达式,该表达式有助于确定转换器的最大臂能量偏差,该偏差是确定转换器的最小子模块电容所需的。还导出了一个简化的数学表达式,以帮助根据最大臂能量偏差、每个转换器臂的子模块数量和最大允许子模块电容器电压偏差(纹波因子)来确定转换器所需的子模块电容。利用仿真和实验结果对推导的手臂能量表达式进行了验证。计算的、模拟的和实验测量的转换器臂能量值彼此匹配良好,验证了导出的转换器臂能源模型的准确性。此外,还提供了AAAC拓扑结构与其他类似转换器拓扑结构(如传统(对称)交替臂转换器拓扑结构和模块化多级转换器拓扑结构)的能量存储要求的比较,以进一步强调导出的转换器臂能量和子模块电容大小表达式的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信