{"title":"An Adaptable Lateral Resolution Acoustic Beamforming for the Internet of Bio-Nano Things in the Brain","authors":"Hanna Firew;Michael Taynnan Barros","doi":"10.1109/TMBMC.2023.3274430","DOIUrl":null,"url":null,"abstract":"The Internet of Bio-Nano Things in the Brain are minimally invasive untethered links between the brain tissue and silicon platforms. Even though these interfaces have been envisioned for many biomedical applications, it is unclear how the ultimate technology will support spatially distributed networks. In this paper, we address the distributed power allocation through adaptable beamforming by varying the acoustic beam lateral resolution. Our results show improvements in average power transfer efficiency for sparser beams compared to narrower ones for a randomly placed network of implantable devices with 15 nodes within a 4mm2 space in the neocortex.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10123121/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The Internet of Bio-Nano Things in the Brain are minimally invasive untethered links between the brain tissue and silicon platforms. Even though these interfaces have been envisioned for many biomedical applications, it is unclear how the ultimate technology will support spatially distributed networks. In this paper, we address the distributed power allocation through adaptable beamforming by varying the acoustic beam lateral resolution. Our results show improvements in average power transfer efficiency for sparser beams compared to narrower ones for a randomly placed network of implantable devices with 15 nodes within a 4mm2 space in the neocortex.
期刊介绍:
As a result of recent advances in MEMS/NEMS and systems biology, as well as the emergence of synthetic bacteria and lab/process-on-a-chip techniques, it is now possible to design chemical “circuits”, custom organisms, micro/nanoscale swarms of devices, and a host of other new systems. This success opens up a new frontier for interdisciplinary communications techniques using chemistry, biology, and other principles that have not been considered in the communications literature. The IEEE Transactions on Molecular, Biological, and Multi-Scale Communications (T-MBMSC) is devoted to the principles, design, and analysis of communication systems that use physics beyond classical electromagnetism. This includes molecular, quantum, and other physical, chemical and biological techniques; as well as new communication techniques at small scales or across multiple scales (e.g., nano to micro to macro; note that strictly nanoscale systems, 1-100 nm, are outside the scope of this journal). Original research articles on one or more of the following topics are within scope: mathematical modeling, information/communication and network theoretic analysis, standardization and industrial applications, and analytical or experimental studies on communication processes or networks in biology. Contributions on related topics may also be considered for publication. Contributions from researchers outside the IEEE’s typical audience are encouraged.