Study on Practical Application for In-process Detection Method of Blowholes
Q3 Materials Science
Kazuki Kasano, Y. Ogino, T. Sano, S. Asai
{"title":"Study on Practical Application for In-process Detection Method of Blowholes","authors":"Kazuki Kasano, Y. Ogino, T. Sano, S. Asai","doi":"10.2207/qjjws.39.334","DOIUrl":null,"url":null,"abstract":"アーク溶接技術は素材同士を接合し製品を製造する上で , 製品品質と製造効率に直結するコア技術である .溶接工程で は溶接継手の品質を保証する為に溶接後検査工程を設ける 事が多いものの,溶接後検査工程において品質上の問題が 生じた場合には,製品は補修工程に流され対処される .こう した補修工程は製造コスト増加および手戻りによる製造効 率の低下の一因となる.その為 ,今後より一層の溶接品質と 溶接効率の両立に向けては,溶接中にインプロセスで異常 検知・予知ができ,異常を検知・予知した瞬間に溶接を停 止し,後工程への異常品の流出を最小限に留める事が要求 される.溶接後検査で手直しとなる要因の一つに溶接部で 発生した溶接欠陥が挙げられる.溶接欠陥の中でも,外観 検査では発見が困難なブローホール (Blow Hole, BH)といっ た内部溶接欠陥は,グラインダーによる研削やガウジング による溶接ビードをはつり後に再度溶接を行う必要があり, 手直し工数の増加および溶接欠陥低減に向けた対策を講じ るのに時間を要する事につながり課題となる. インプロセスでの溶接欠陥が発生したことの検知につな がる技術は従来から種々取り組まれてきている.溶接後の 溶接欠陥検査で用いられる超音波探傷試験 (Ultrasonic Testing, UT)を自動化した自動UT技術,UTに加えてアコー スティック・エミッション試験 (Acoustic Emission Testing, AET)を組み合わせた技術,レーザーを用い母材内部に励 起された超音波を計測用レーザーで捉える非接触式レー ザーUT技術が開発されている.これらの技術では溶接欠 陥が発生したことを検知でき,インプロセスで溶接欠陥発 生の検知が可能であるものの,溶接欠陥が発生した後での 検知に限られる.一方,溶接中に得られる情報を解析する ことによりインプロセスで溶接欠陥が発生したことを検知, もしくは溶接欠陥が発生し易い状態であることを判定し, 溶接欠陥発生を事前に抑止する技術も種々報告されている. 溶接中の電流・電圧波形計測結果から,短絡発生頻度・周 期を分析する技術,短絡移行形態ではないグロビュール・ スプレー移行形態時における電流・電圧波形の変動を分析 する技術,パルス TIGのパルスピーク・ベース波形の変動 周期を分析する技術,といった手法が報告されている. 電流・電圧波形と同様に溶接中に得られる情報として,溶 接時に発せられる音を集音し,正常時と異常時の音波形を 分析する技術も報告されている.また,電流・電圧波形, 溶接音に加えて,溶接速度・ウィービング幅・シールドガ ス流量といった溶接中の種々の情報を統合して収集し,分 析する技術も併せて報告されている.いずれの技術も溶 接中に得られた情報を統計的手法もしくは機械学習を活用 し解析することにより,溶接欠陥が発生したことを検知も しくは溶接欠陥の発生を予測することが可能である.これ らの技術はインプロセスでの溶接欠陥発生検知および発生 予測が可能であるものの,施工条件が変更になった場合に は検知指標に用いているしきい値を再設定する必要がある. 加えて,電流・電圧波形や溶接音に認められる異常は溶接 欠陥だけではなく,種々の外乱によっても引き起こされる インプロセスでのブローホール発生検知手法の実用化に向けた検証","PeriodicalId":39980,"journal":{"name":"Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2207/qjjws.39.334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
Abstract
アーク溶接技術は素材同士を接合し製品を製造する上で , 製品品質と製造効率に直結するコア技術である .溶接工程で は溶接継手の品質を保証する為に溶接後検査工程を設ける 事が多いものの,溶接後検査工程において品質上の問題が 生じた場合には,製品は補修工程に流され対処される .こう した補修工程は製造コスト増加および手戻りによる製造効 率の低下の一因となる.その為 ,今後より一層の溶接品質と 溶接効率の両立に向けては,溶接中にインプロセスで異常 検知・予知ができ,異常を検知・予知した瞬間に溶接を停 止し,後工程への異常品の流出を最小限に留める事が要求 される.溶接後検査で手直しとなる要因の一つに溶接部で 発生した溶接欠陥が挙げられる.溶接欠陥の中でも,外観 検査では発見が困難なブローホール (Blow Hole, BH)といっ た内部溶接欠陥は,グラインダーによる研削やガウジング による溶接ビードをはつり後に再度溶接を行う必要があり, 手直し工数の増加および溶接欠陥低減に向けた対策を講じ るのに時間を要する事につながり課題となる. インプロセスでの溶接欠陥が発生したことの検知につな がる技術は従来から種々取り組まれてきている.溶接後の 溶接欠陥検査で用いられる超音波探傷試験 (Ultrasonic Testing, UT)を自動化した自動UT技術,UTに加えてアコー スティック・エミッション試験 (Acoustic Emission Testing, AET)を組み合わせた技術,レーザーを用い母材内部に励 起された超音波を計測用レーザーで捉える非接触式レー ザーUT技術が開発されている.これらの技術では溶接欠 陥が発生したことを検知でき,インプロセスで溶接欠陥発 生の検知が可能であるものの,溶接欠陥が発生した後での 検知に限られる.一方,溶接中に得られる情報を解析する ことによりインプロセスで溶接欠陥が発生したことを検知, もしくは溶接欠陥が発生し易い状態であることを判定し, 溶接欠陥発生を事前に抑止する技術も種々報告されている. 溶接中の電流・電圧波形計測結果から,短絡発生頻度・周 期を分析する技術,短絡移行形態ではないグロビュール・ スプレー移行形態時における電流・電圧波形の変動を分析 する技術,パルス TIGのパルスピーク・ベース波形の変動 周期を分析する技術,といった手法が報告されている. 電流・電圧波形と同様に溶接中に得られる情報として,溶 接時に発せられる音を集音し,正常時と異常時の音波形を 分析する技術も報告されている.また,電流・電圧波形, 溶接音に加えて,溶接速度・ウィービング幅・シールドガ ス流量といった溶接中の種々の情報を統合して収集し,分 析する技術も併せて報告されている.いずれの技術も溶 接中に得られた情報を統計的手法もしくは機械学習を活用 し解析することにより,溶接欠陥が発生したことを検知も しくは溶接欠陥の発生を予測することが可能である.これ らの技術はインプロセスでの溶接欠陥発生検知および発生 予測が可能であるものの,施工条件が変更になった場合に は検知指標に用いているしきい値を再設定する必要がある. 加えて,電流・電圧波形や溶接音に認められる異常は溶接 欠陥だけではなく,種々の外乱によっても引き起こされる インプロセスでのブローホール発生検知手法の実用化に向けた検証
工艺中气孔检测方法的实际应用研究
电弧焊技术是连接材料制造产品时直接关系到产品质量和制造效率的核心技术。在焊接工序中,为了保证焊接接头的质量,通常会设置焊后检查工序,如果在焊后检查工序中出现了质量上的问题,产品就会被转移到维修工序中处理。维修工序是制造成本增加和返工导致制造效率低下的原因之一。因此,为了进一步提高焊接质量和焊接效率,焊接过程中不能出现异常要求能够检测、预知,在检测、预知异常的瞬间停止焊接,最大限度地减少异常产品流向后工序。焊接后检查导致修改的主要原因之一是焊缝中发生的焊接缺陷。焊接缺陷中,通过外观检查难以发现的吹孔(Blow Hole,BH)等内部焊接缺陷,需要在用磨砂机磨削或用胶皮焊接发出后再次进行焊接,修改工时的增加以及为了降低焊接缺陷而采取的对策需要时间,这是一个问题。检测内部工艺中发生的焊接缺陷的技术从以前开始就被各种采用。用于焊接后的焊接缺陷检查的超声波探伤试验(Ultrasonic Testing,UT)自动化的自动UT技术,在UT的基础上再加上声学排放测试(Acoustic Emission Testing,AET)组合的技术,利用激光测量用激光捕捉母材内部发出的超声波的非接触式激光UT技术正在开发中。虽然可以检测出发生了凹陷,并且可以通过内部工艺检测出焊接缺陷的发生,但仅限于焊接缺陷发生后的检测。另一方面,通过分析焊接过程中获得的信息,检测出内部工艺中发生了焊接缺陷,或判定为容易发生焊接缺陷的状态,也有各种事前抑制焊接缺陷发生的技术报告。根据焊接过程中的电流、电压波形计测结果,分析短路发生频率、周期的技术;分析非短路转换形式的熔接、喷涂转换形式时电流、电压波形变动的技术;脉冲包括分析TIG脉冲峰值基本波形变动周期的技术等方法。与电流、电压波形一样,作为焊接过程中获得的信息,也有报告指出,可以收集熔接时发出的声音,分析正常和异常时声波形状的技术。除焊接声外,还报告了可综合收集并分析焊接速度、焊接宽度、屏蔽气体流量等焊接过程中的各种信息的技术。通过利用统计方法或机器学习分析焊接过程中得到的信息,可检测焊接缺陷或预测焊接缺陷的发生。等的技术虽然能够在内部工艺中检测焊接缺陷的发生并预测发生缺陷,但在施工条件发生变更时,必须重新设定检测指标所使用的阈值。另外,电流、电压波形和焊接声音中被认定为异常的不仅是焊接缺陷,还会由各种干扰引起,这是面向内工艺中吹孔产生检测方法实用化的验证
本文章由计算机程序翻译,如有差异,请以英文原文为准。