Calorific and greenhouse gas emission in municipal solid waste treatment using biodrying

IF 3.1 Q2 ENVIRONMENTAL SCIENCES
B. Zaman, W. Oktiawan, M. Hadiwidodo, E. Sutrisno, P. Purwono
{"title":"Calorific and greenhouse gas emission in municipal solid waste treatment using biodrying","authors":"B. Zaman, W. Oktiawan, M. Hadiwidodo, E. Sutrisno, P. Purwono","doi":"10.22034/GJESM.2021.01.03","DOIUrl":null,"url":null,"abstract":"BACKGROUND AND OBJECTIVES: Urban intensity and activities produce a large amount of biodegradable municipal solid waste. Therefore, biodrying processing was adopted to ensure the conversion into Refuse Derived Fuel and greenhouse gases. METHODS: This study was performed at a greenhouse, using six biodrying reactors made from acrylic material, and equipped with digital temperature recording, blower, and flow meters. The variations in airflow (0, 2, 3, 4, 5, 6 L/min/kg) and the bulking agent (15%) were used to evaluate calorific value, degradation process and GHG emissions. FINDINGS: The result showed significant effect of airflow variation on cellulose content and calorific value. Furthermore, the optimum value was 6 L/min/kg, producing a 10.05% decline in cellulose content, and a 38.17% increase in calorific value. Also, the water content reduced from 69% to 40%. The CH4 concentration between control and biodrying substantially varied at 2.65 ppm and 1.51 ppm respectively on day 0 and at peak temperature. Morever, the value of N2O in each control was about 534.69 ppb and 175.48 ppb, while the lowest level was recorded after biodrying with 2 L/min/kg airflow. CONCLUSION: The calorific value of MSW after biodrying (refuse derived fuel) ranges from 4,713 – 6,265 cal/g. This is further classified in the low energy coal (brown coal) category, equivalent to <7,000 cal/g. Therefore, the process is proven to be a suitable alternative to achieve RDF production and low GHG emissions.","PeriodicalId":46495,"journal":{"name":"GLOBAL JOURNAL OF ENVIRONMENTAL SCIENCE AND MANAGEMENT-GJESM","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GLOBAL JOURNAL OF ENVIRONMENTAL SCIENCE AND MANAGEMENT-GJESM","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/GJESM.2021.01.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 11

Abstract

BACKGROUND AND OBJECTIVES: Urban intensity and activities produce a large amount of biodegradable municipal solid waste. Therefore, biodrying processing was adopted to ensure the conversion into Refuse Derived Fuel and greenhouse gases. METHODS: This study was performed at a greenhouse, using six biodrying reactors made from acrylic material, and equipped with digital temperature recording, blower, and flow meters. The variations in airflow (0, 2, 3, 4, 5, 6 L/min/kg) and the bulking agent (15%) were used to evaluate calorific value, degradation process and GHG emissions. FINDINGS: The result showed significant effect of airflow variation on cellulose content and calorific value. Furthermore, the optimum value was 6 L/min/kg, producing a 10.05% decline in cellulose content, and a 38.17% increase in calorific value. Also, the water content reduced from 69% to 40%. The CH4 concentration between control and biodrying substantially varied at 2.65 ppm and 1.51 ppm respectively on day 0 and at peak temperature. Morever, the value of N2O in each control was about 534.69 ppb and 175.48 ppb, while the lowest level was recorded after biodrying with 2 L/min/kg airflow. CONCLUSION: The calorific value of MSW after biodrying (refuse derived fuel) ranges from 4,713 – 6,265 cal/g. This is further classified in the low energy coal (brown coal) category, equivalent to <7,000 cal/g. Therefore, the process is proven to be a suitable alternative to achieve RDF production and low GHG emissions.
生物干燥处理城市生活垃圾的热量和温室气体排放
背景和目的:城市强度和活动产生大量可生物降解的城市固体废物。因此,采用生物干燥处理,以确保转化为垃圾衍生燃料和温室气体。方法:本研究在温室中进行,使用六个由丙烯酸材料制成的生物干燥反应器,并配备数字温度记录,鼓风机和流量计。利用气流(0、2、3、4、5、6 L/min/kg)和填充剂(15%)的变化来评估热值、降解过程和温室气体排放。结果:气流变化对纤维素含量和热值有显著影响。最佳处理条件为6 L/min/kg,纤维素含量降低10.05%,发热量提高38.17%。同时,水含量从69%降低到40%。对照和生物干燥之间的CH4浓度在第0天和峰值温度分别为2.65 ppm和1.51 ppm,变化很大。各对照N2O值分别为534.69 ppb和175.48 ppb,以2 L/min/kg气流进行生物干燥后N2O值最低。结论:生活垃圾生物干燥后的热值(垃圾衍生燃料)为4,713 ~ 6,265 cal/g。这进一步被归类为低能煤(褐煤)类别,相当于<7,000卡路里/克。因此,该工艺被证明是实现RDF生产和低温室气体排放的合适替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
2.90%
发文量
11
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信