Akinori Kuzuya;Shin-Ichiro M. Nomura;Taro Toyota;Takashi Nakakuki;Satoshi Murata
{"title":"From Molecular Robotics to Molecular Cybernetics: The First Step Toward Chemical Artificial Intelligence","authors":"Akinori Kuzuya;Shin-Ichiro M. Nomura;Taro Toyota;Takashi Nakakuki;Satoshi Murata","doi":"10.1109/TMBMC.2023.3304243","DOIUrl":null,"url":null,"abstract":"“Molecular Cybernetics” is an emerging research field aiming the development of “Chemical AI”, artificial intelligence with memory and learning capabilities based on molecular communication. It is originated from “Molecular Robotics,” which studies molecular systems that comprise of the three basic elements of robots; Sensing, Planning, and Acting. Development of an Amoeba-type molecular robot (unicellular artificial cell,) motivated the construction of multicellular artificial cell systems mimicking nerve systems. The major challenges in molecular cybernetics are molecular communication over two lipid-bilayer compartments, amplification of molecular information in a compartment, and large deformation of the compartment triggered by molecular signal, etc. Recently reported molecular devices and systems that contributes to the realization of Chemical AI are overviewed.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/6687308/10255331/10214301.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10214301/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
“Molecular Cybernetics” is an emerging research field aiming the development of “Chemical AI”, artificial intelligence with memory and learning capabilities based on molecular communication. It is originated from “Molecular Robotics,” which studies molecular systems that comprise of the three basic elements of robots; Sensing, Planning, and Acting. Development of an Amoeba-type molecular robot (unicellular artificial cell,) motivated the construction of multicellular artificial cell systems mimicking nerve systems. The major challenges in molecular cybernetics are molecular communication over two lipid-bilayer compartments, amplification of molecular information in a compartment, and large deformation of the compartment triggered by molecular signal, etc. Recently reported molecular devices and systems that contributes to the realization of Chemical AI are overviewed.
期刊介绍:
As a result of recent advances in MEMS/NEMS and systems biology, as well as the emergence of synthetic bacteria and lab/process-on-a-chip techniques, it is now possible to design chemical “circuits”, custom organisms, micro/nanoscale swarms of devices, and a host of other new systems. This success opens up a new frontier for interdisciplinary communications techniques using chemistry, biology, and other principles that have not been considered in the communications literature. The IEEE Transactions on Molecular, Biological, and Multi-Scale Communications (T-MBMSC) is devoted to the principles, design, and analysis of communication systems that use physics beyond classical electromagnetism. This includes molecular, quantum, and other physical, chemical and biological techniques; as well as new communication techniques at small scales or across multiple scales (e.g., nano to micro to macro; note that strictly nanoscale systems, 1-100 nm, are outside the scope of this journal). Original research articles on one or more of the following topics are within scope: mathematical modeling, information/communication and network theoretic analysis, standardization and industrial applications, and analytical or experimental studies on communication processes or networks in biology. Contributions on related topics may also be considered for publication. Contributions from researchers outside the IEEE’s typical audience are encouraged.