Identification and Functional Analysis of MicroRNAs and Their Target Genes in Reverse Thermosensitive Genic Male Sterility of Eggplant

IF 1.2 4区 农林科学 Q3 HORTICULTURE
Bing Li, Jingjing Zhang, Xiurui Gao, Xiuqing Pan, Rong Zhou, Yanrong Wu
{"title":"Identification and Functional Analysis of MicroRNAs and Their Target Genes in Reverse Thermosensitive Genic Male Sterility of Eggplant","authors":"Bing Li, Jingjing Zhang, Xiurui Gao, Xiuqing Pan, Rong Zhou, Yanrong Wu","doi":"10.21273/jashs05222-22","DOIUrl":null,"url":null,"abstract":"Thermosensitive genic male sterile (TGMS) lines are the core of two-line hybrid systems. MicroRNAs (miRNAs) play critical roles in plant growth and development. However, knowledge of regulation of anther development by miRNAs in TGMS eggplant (Solanum melongena) is largely unexplored. To investigate the mechanism underlying miRNA regulation of male sterility, we employed high-throughput small RNA sequencing in anther samples from the reverse TGMS line 05ms and the temperature-insensitive line S63 in eggplant, under high temperature and low temperature conditions. The 05ms line is sterile at low temperature and fertile at high temperature. A total of 166,273,427 raw reads were obtained, 143 known miRNAs from 42 miRNA families and 104 novel miRNAs were detected. Further, six differentially expressed miRNAs (DEMs) were identified, including three known (miR168b-3p, miR397–5p, and miR408) and three novel miRNAs (Novel_116, Novel_119, and Novel_97), which might be related to anther development. Moreover, the six DEMs were validated by quantitative real-time polymerase chain reaction and 892 target genes of which were predicted. Gene Ontology analysis of target genes revealed significant enrichment in the “copper ion binding,” “oxidation-reduction process,” and “oxidoreductase activity” terms. Kyoto Encyclopedia of Genes and Genomes analysis revealed that “plant hormone signal transduction” and “other glycan degradation” were enriched. In addition, we constructed regulatory networks comprising miRNAs, target genes, and important terms/pathways and found the miR397-5p was the most linked miRNA, down-regulated under low temperature. Our findings contribute to understanding of the roles of miRNA during anther development and provide the theoretical foundation for two-line hybrid breeding of eggplant.","PeriodicalId":17226,"journal":{"name":"Journal of the American Society for Horticultural Science","volume":"1 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Society for Horticultural Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.21273/jashs05222-22","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HORTICULTURE","Score":null,"Total":0}
引用次数: 1

Abstract

Thermosensitive genic male sterile (TGMS) lines are the core of two-line hybrid systems. MicroRNAs (miRNAs) play critical roles in plant growth and development. However, knowledge of regulation of anther development by miRNAs in TGMS eggplant (Solanum melongena) is largely unexplored. To investigate the mechanism underlying miRNA regulation of male sterility, we employed high-throughput small RNA sequencing in anther samples from the reverse TGMS line 05ms and the temperature-insensitive line S63 in eggplant, under high temperature and low temperature conditions. The 05ms line is sterile at low temperature and fertile at high temperature. A total of 166,273,427 raw reads were obtained, 143 known miRNAs from 42 miRNA families and 104 novel miRNAs were detected. Further, six differentially expressed miRNAs (DEMs) were identified, including three known (miR168b-3p, miR397–5p, and miR408) and three novel miRNAs (Novel_116, Novel_119, and Novel_97), which might be related to anther development. Moreover, the six DEMs were validated by quantitative real-time polymerase chain reaction and 892 target genes of which were predicted. Gene Ontology analysis of target genes revealed significant enrichment in the “copper ion binding,” “oxidation-reduction process,” and “oxidoreductase activity” terms. Kyoto Encyclopedia of Genes and Genomes analysis revealed that “plant hormone signal transduction” and “other glycan degradation” were enriched. In addition, we constructed regulatory networks comprising miRNAs, target genes, and important terms/pathways and found the miR397-5p was the most linked miRNA, down-regulated under low temperature. Our findings contribute to understanding of the roles of miRNA during anther development and provide the theoretical foundation for two-line hybrid breeding of eggplant.
茄子逆温性雄性不育microrna及其靶基因的鉴定与功能分析
热敏性雄性不育系是两系杂交系统的核心。MicroRNAs (miRNAs)在植物生长发育中起着至关重要的作用。然而,在TGMS茄子(Solanum melongena)中,mirna对花药发育的调控在很大程度上是未知的。为了研究miRNA调控雄性不育的机制,我们对茄子逆转录TGMS系05ms和温度不敏感系S63的花药样品在高温和低温条件下进行了高通量小RNA测序。05ms系低温不育,高温可育。共获得166,273,427个原始reads,检测到来自42个miRNA家族的143个已知miRNA和104个新miRNA。此外,还鉴定了6个差异表达miRNAs (DEMs),包括3个已知的miR168b-3p, miR397-5p和miR408,以及3个可能与花药发育有关的新miRNAs (Novel_116, Novel_119和Novel_97)。通过实时定量聚合酶链反应对6个dem进行了验证,预测了892个靶基因。基因本体分析显示靶基因在“铜离子结合”、“氧化还原过程”和“氧化还原酶活性”方面显著富集。京都基因与基因组百科分析显示,“植物激素信号转导”和“其他聚糖降解”富集。此外,我们构建了由miRNA、靶基因和重要术语/途径组成的调控网络,发现miR397-5p是最相关的miRNA,在低温下下调。研究结果有助于了解miRNA在茄子花药发育中的作用,为茄子两系杂交育种提供理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
31
审稿时长
2 months
期刊介绍: The Journal of the American Society for Horticultural Science publishes papers on the results of original research on horticultural plants and their products or directly related research areas. Its prime function is to communicate mission-oriented, fundamental research to other researchers. The journal includes detailed reports of original research results on various aspects of horticultural science and directly related subjects such as: - Biotechnology - Developmental Physiology - Environmental Stress Physiology - Genetics and Breeding - Photosynthesis, Sources-Sink Physiology - Postharvest Biology - Seed Physiology - Postharvest Biology - Seed Physiology - Soil-Plant-Water Relationships - Statistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信