A Hybrid Model to Estimate Mean of Maximum Fields Inside Small Metal Enclosures Using Deep Neural Networks and Maximum Likelihood Estimator

IF 0.9 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Neda Nourshamsi;Amir H. Jafari;Pedro Uría Rodríguez;Jeffrey A. Nanzer
{"title":"A Hybrid Model to Estimate Mean of Maximum Fields Inside Small Metal Enclosures Using Deep Neural Networks and Maximum Likelihood Estimator","authors":"Neda Nourshamsi;Amir H. Jafari;Pedro Uría Rodríguez;Jeffrey A. Nanzer","doi":"10.1109/LEMCPA.2022.3162068","DOIUrl":null,"url":null,"abstract":"This letter addresses a new regression model with the deep neural network (DNN) to estimate the mean of the maximum field inside two different nested-reverberation chamber configurations. In this model, a frequency range that the enclosure is expected to be in the over-moded regime is used as an input of the network, and the mean of the maximum field for both aperture scenarios is used as the output of the network. A 16-layer network with two regression heads provided the best regression model for both configurations, manifesting the trained model can accurately extrapolate the mean of maxima in the other frequency steps that are not used in the training data set. The tested and training root-mean-squared errors \n<inline-formula> <tex-math>$(485e^{-5}, 851e^{-5})$ </tex-math></inline-formula>\n are achieved with the network, demonstrating the network is feasible to detect the mean of maxima for two different nested-chamber configurations, extending the earlier work which considered estimation of the mean of maxima for a single nested chamber-configuration.","PeriodicalId":100625,"journal":{"name":"IEEE Letters on Electromagnetic Compatibility Practice and Applications","volume":"4 2","pages":"31-35"},"PeriodicalIF":0.9000,"publicationDate":"2022-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Letters on Electromagnetic Compatibility Practice and Applications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9741246/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

Abstract

This letter addresses a new regression model with the deep neural network (DNN) to estimate the mean of the maximum field inside two different nested-reverberation chamber configurations. In this model, a frequency range that the enclosure is expected to be in the over-moded regime is used as an input of the network, and the mean of the maximum field for both aperture scenarios is used as the output of the network. A 16-layer network with two regression heads provided the best regression model for both configurations, manifesting the trained model can accurately extrapolate the mean of maxima in the other frequency steps that are not used in the training data set. The tested and training root-mean-squared errors $(485e^{-5}, 851e^{-5})$ are achieved with the network, demonstrating the network is feasible to detect the mean of maxima for two different nested-chamber configurations, extending the earlier work which considered estimation of the mean of maxima for a single nested chamber-configuration.
用深度神经网络和最大似然估计估计小金属外壳内最大场平均值的混合模型
这封信介绍了一种新的回归模型,该模型使用深度神经网络(DNN)来估计两种不同嵌套混响室内最大场的平均值。在该模型中,外壳预计处于过模状态的频率范围被用作网络的输入,两种孔径情况下的最大场的平均值被用作网络输出。具有两个回归头的16层网络为这两种配置提供了最佳的回归模型,表明训练后的模型可以准确地外推训练数据集中未使用的其他频率步长中的最大值的平均值。使用该网络实现了测试和训练的均方根误差$(485e^{-5},851e^{-5})$,证明该网络可以检测两种不同嵌套腔室配置的最大值平均值,扩展了早期考虑估计单个嵌套腔室配置最大值平均数的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信