{"title":"Random Access Mechanism Enhancement Based on a Hybrid ALOHA Protocol Using an Analytical Model","authors":"Abdessamad Bellouch;Abdellah Zaaloul;Abdelkrim Haqiq","doi":"10.13052/jicts2245-800X.1032","DOIUrl":null,"url":null,"abstract":"In this paper, we present a new MAC (Medium Access Control) protocol, called Hybrid ALOHA (H-ALOHA), which is a combination of two existing protocols: Pure ALOHA (P-ALOHA) protocol and Slotted ALOHA (S-ALOHA) protocol. The idea behind it is to design a MAC protocol that could meet some specific requirements in wireless networks, such as reducing energy consumption, delay minimization, and increasing the throughput. To the best of our knowledge, the S-ALOHA protocol is an improved version of P-ALOHA. However, during one single transmission scenario, P-ALOHA works better than S-ALOHA in terms of energy consumption and packet delivery. Motivated by that fact, we combine these two protocols, resulting in a hybrid ALOHA. A finite-state Markovian model is proposed to study the steady-state performance of H-ALOHA including normalized throughput, backlogged throughput, access delay, backlogged delay, and energy consumption. The proposed hybrid protocol has been compared with the S-ALOHA protocol. The simulation results show that the proposed hybrid protocol outperforms all ALOHA protocols. On average, the proposed protocol outperforms the S-ALOHA protocol by 60% in terms of normalized throughput, by 15% in terms of access delay, and by 23% in terms of total energy consumed during the transmission process.","PeriodicalId":36697,"journal":{"name":"Journal of ICT Standardization","volume":"10 3","pages":"383-409"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/10251929/10255395/10255400.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of ICT Standardization","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10255400/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we present a new MAC (Medium Access Control) protocol, called Hybrid ALOHA (H-ALOHA), which is a combination of two existing protocols: Pure ALOHA (P-ALOHA) protocol and Slotted ALOHA (S-ALOHA) protocol. The idea behind it is to design a MAC protocol that could meet some specific requirements in wireless networks, such as reducing energy consumption, delay minimization, and increasing the throughput. To the best of our knowledge, the S-ALOHA protocol is an improved version of P-ALOHA. However, during one single transmission scenario, P-ALOHA works better than S-ALOHA in terms of energy consumption and packet delivery. Motivated by that fact, we combine these two protocols, resulting in a hybrid ALOHA. A finite-state Markovian model is proposed to study the steady-state performance of H-ALOHA including normalized throughput, backlogged throughput, access delay, backlogged delay, and energy consumption. The proposed hybrid protocol has been compared with the S-ALOHA protocol. The simulation results show that the proposed hybrid protocol outperforms all ALOHA protocols. On average, the proposed protocol outperforms the S-ALOHA protocol by 60% in terms of normalized throughput, by 15% in terms of access delay, and by 23% in terms of total energy consumed during the transmission process.