Magnetic Structural Analysis of Nanocrystalline Soft Magnets by Small-Angle Neutron Scattering

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Hiroaki Mamiya;Yojiro Oba;Kosuke Hiroi;Takayuki Miyatake;Ravi Gautam;Hossein Sepehri-Amin;Tadakatsu Ohkubo
{"title":"Magnetic Structural Analysis of Nanocrystalline Soft Magnets by Small-Angle Neutron Scattering","authors":"Hiroaki Mamiya;Yojiro Oba;Kosuke Hiroi;Takayuki Miyatake;Ravi Gautam;Hossein Sepehri-Amin;Tadakatsu Ohkubo","doi":"10.1109/LMAG.2023.3242108","DOIUrl":null,"url":null,"abstract":"Nanocrystalline soft magnets have attracted significant attention for their improvement of energy conversion devices. It has been considered that the partial nanocrystallization of amorphous structures is a key to macroscopic magnetic softness. However, the mechanism has not been clarified because of inadequate knowledge of the magnetic nanostructures connecting microscopic crystalline structures and macroscopic magnetic properties. Here, we performed small-angle neutron scattering (SANS) for Fe\n<sub>85</sub>\nSi\n<sub>2</sub>\nB\n<sub>8</sub>\nP\n<sub>4</sub>\nCu\n<sub>1</sub>\n alloy ribbons (NANOMETs). Rapidly quenched ribbons were annealed at 375 °C and 400 °C for 5 min. The X-ray diffraction pattern for the as-quenched ribbons did not exhibit peaks. Therefore, their atomic structure can be considered amorphous. Oppositely, evident α-iron peaks were observed for the ribbons annealed at 375 °C and 400 °C. The nuclear scattering contribution in SANS indicates that the precipitations were formed with sizes in the nanoscale. The magnetic scattering contribution in SANS for the as-quenched ribbon, whose intensity decreased with an increase in the scattering vector \n<italic>q</i>\n in proportion to \n<italic>q</i>\n<sup>−4</sup>\n, disappeared when magnetic fields were applied. This behavior is consistent with the conventional magnetic domain picture. Oppositely, the reduction rates of the magnetic scattering contribution for \n<italic>q</i>\n were nonmonotonous for the nanocrystallized ribbons. Furthermore, strong magnetic scattering was observed in the directions inclined to the magnetic field. This feature is similar to that reported for Fe–(Nb, Zr)–B alloy ribbons (NANOPERMs). The knowledge on the magnetic nanostructures characterized by the unusual angular dependence of magnetic scattering would be helpful to considering the relationship between partially nanocrystallized structure and macroscopic soft magnetic properties.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10036365/","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Nanocrystalline soft magnets have attracted significant attention for their improvement of energy conversion devices. It has been considered that the partial nanocrystallization of amorphous structures is a key to macroscopic magnetic softness. However, the mechanism has not been clarified because of inadequate knowledge of the magnetic nanostructures connecting microscopic crystalline structures and macroscopic magnetic properties. Here, we performed small-angle neutron scattering (SANS) for Fe 85 Si 2 B 8 P 4 Cu 1 alloy ribbons (NANOMETs). Rapidly quenched ribbons were annealed at 375 °C and 400 °C for 5 min. The X-ray diffraction pattern for the as-quenched ribbons did not exhibit peaks. Therefore, their atomic structure can be considered amorphous. Oppositely, evident α-iron peaks were observed for the ribbons annealed at 375 °C and 400 °C. The nuclear scattering contribution in SANS indicates that the precipitations were formed with sizes in the nanoscale. The magnetic scattering contribution in SANS for the as-quenched ribbon, whose intensity decreased with an increase in the scattering vector q in proportion to q −4 , disappeared when magnetic fields were applied. This behavior is consistent with the conventional magnetic domain picture. Oppositely, the reduction rates of the magnetic scattering contribution for q were nonmonotonous for the nanocrystallized ribbons. Furthermore, strong magnetic scattering was observed in the directions inclined to the magnetic field. This feature is similar to that reported for Fe–(Nb, Zr)–B alloy ribbons (NANOPERMs). The knowledge on the magnetic nanostructures characterized by the unusual angular dependence of magnetic scattering would be helpful to considering the relationship between partially nanocrystallized structure and macroscopic soft magnetic properties.
用小角度中子散射法分析纳米晶软磁体的磁结构
纳米晶体软磁体由于其对能量转换器件的改进而引起了人们的极大关注。非晶结构的部分纳米化被认为是宏观磁柔软度的关键。然而,由于对连接微观晶体结构和宏观磁性的磁性纳米结构了解不足,该机制尚未阐明。在这里,我们对Fe85Si2B8P4Cu1合金带(NANOMETs)进行了小角度中子散射(SANS)。快淬薄带在375℃退火 °C和400 持续5分钟。淬火后的带状物的X射线衍射图没有显示出峰值。因此,它们的原子结构可以被认为是无定形的。相反,在375℃退火的薄带上观察到明显的α-铁峰 °C和400 °C。SANS中的核散射贡献表明沉淀是以纳米级的尺寸形成的。当施加磁场时,淬火带的SANS中的磁散射贡献消失了,其强度随着散射矢量q的增加而降低,与q−4成比例。这种行为与传统的磁畴图像一致。相反,对于纳米晶体带,q的磁散射贡献的降低率是非单调的。此外,在倾斜于磁场的方向上观察到强磁散射。该特征与报道的Fe–(Nb,Zr)–B合金带(NANOPERM)的特征相似。关于以磁散射的异常角度依赖性为特征的磁性纳米结构的知识将有助于考虑部分纳米化结构与宏观软磁性能之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信