Sruthy Poulose;Yara Alvarez-Braña;Lourdes Basabel-Desmonts;Fernando Benito-Lopez;John Michael David Coey
{"title":"Magnetic Field Enhancement of Water Evaporation in Confined Spaces","authors":"Sruthy Poulose;Yara Alvarez-Braña;Lourdes Basabel-Desmonts;Fernando Benito-Lopez;John Michael David Coey","doi":"10.1109/LMAG.2023.3262976","DOIUrl":null,"url":null,"abstract":"Water is studied in confined environments where it evaporates into its own vapor. Simultaneous experiments are conducted for 0.4–0.5 µL droplets confined at the center of 54 mm long microchannels with a cross section of 0.38 mm\n<sup>2</sup>\n in the presence and absence of a 300 mT magnetic field. Results are compared with those for water in half-filled 100 mL beakers. The magnetic enhancement of the evaporation rate is much greater in the microchannels, where effects range up to 140% even though the air is saturated with water vapor, as compared to 12 ± 7% in a 500 mT field in the beakers. The average steady state, no-field evaporation rate of 0.13 kg\n<inline-formula><tex-math>$\\cdot$</tex-math></inline-formula>\nm\n<sup>−2</sup>\n<inline-formula><tex-math>$\\cdot$</tex-math></inline-formula>\nh\n<sup>−1</sup>\n in the microchannels is roughly double that in the beakers, but less than the value expected at an open surface in still air. The magnetic enhancement is analyzed in terms of the \n<italic>ortho</i>\n and \n<italic>para</i>\n nuclear isomers of water vapor, which behave as independent gasses. The \n<italic>ortho:para</i>\n ratio in fresh vapor is close to 2:3, and quite different from the 3:1 equilibrium ratio in ambient air. Evaporation is increased by the gradient of the applied magnetic field, which dephases the Larmor precession of the two proton spins of hydrogen in a water molecule and tends to equalize the isomeric populations in the vapor, thereby increasing the evaporation rate.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/5165412/10018138/10092455.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10092455/","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Water is studied in confined environments where it evaporates into its own vapor. Simultaneous experiments are conducted for 0.4–0.5 µL droplets confined at the center of 54 mm long microchannels with a cross section of 0.38 mm
2
in the presence and absence of a 300 mT magnetic field. Results are compared with those for water in half-filled 100 mL beakers. The magnetic enhancement of the evaporation rate is much greater in the microchannels, where effects range up to 140% even though the air is saturated with water vapor, as compared to 12 ± 7% in a 500 mT field in the beakers. The average steady state, no-field evaporation rate of 0.13 kg
$\cdot$
m
−2$\cdot$
h
−1
in the microchannels is roughly double that in the beakers, but less than the value expected at an open surface in still air. The magnetic enhancement is analyzed in terms of the
ortho
and
para
nuclear isomers of water vapor, which behave as independent gasses. The
ortho:para
ratio in fresh vapor is close to 2:3, and quite different from the 3:1 equilibrium ratio in ambient air. Evaporation is increased by the gradient of the applied magnetic field, which dephases the Larmor precession of the two proton spins of hydrogen in a water molecule and tends to equalize the isomeric populations in the vapor, thereby increasing the evaporation rate.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.