{"title":"Crystal Structure and Magnetic Properties of Hexagonal FeCo Nitrides Prepared Using Ammonia Gas Nitrification","authors":"Chihiro Kodaka;Mikio Kishimoto;Eiji Kita;Hideto Yanagihara","doi":"10.1109/LMAG.2023.3262452","DOIUrl":null,"url":null,"abstract":"Single-phase <inline-formula><tex-math notation=\"LaTeX\">$\\varepsilon$</tex-math></inline-formula>-(FeCo)<italic><sub>x</sub></italic>N compound particles with <inline-formula><tex-math notation=\"LaTeX\">$x$</tex-math></inline-formula> = 2.25–2.48 were synthesized using ammonia gas nitrification. The mass magnetization <inline-formula><tex-math notation=\"LaTeX\">$M$</tex-math></inline-formula> at 10 K under a magnetic field of 9 T was 77 A<inline-formula><tex-math notation=\"LaTeX\">$\\cdot$</tex-math></inline-formula>m<inline-formula><tex-math notation=\"LaTeX\">$^{2}$</tex-math></inline-formula>/kg, and Curie temperature <inline-formula><tex-math notation=\"LaTeX\">$T$</tex-math></inline-formula><sub>C</sub> was 100 K for <inline-formula><tex-math notation=\"LaTeX\">$x$</tex-math></inline-formula> = 2.48. These values decreased with increasing nitrogen content. Compared with <inline-formula><tex-math notation=\"LaTeX\">$\\varepsilon$</tex-math></inline-formula>-Fe<italic><sub>x</sub></italic>N, (FeCo)<italic><sub>x</sub></italic>N had significantly lower <inline-formula><tex-math notation=\"LaTeX\">$M$</tex-math></inline-formula> and <inline-formula><tex-math notation=\"LaTeX\">$T$</tex-math></inline-formula><sub>C</sub> values, even at comparable nitrogen content. Mössbauer spectroscopy suggests that the magnetic moment of Co decreases with increasing nitrogen content and disappears at approximately <inline-formula><tex-math notation=\"LaTeX\">$x$</tex-math></inline-formula> = 2.35, even at the lowest measurement temperature of <inline-formula><tex-math notation=\"LaTeX\">$T$</tex-math></inline-formula> = 3 K. Griffiths phaselike magnetic behavior was observed in the temperature dependence of magnetic susceptibility. The experimental results indicate that the Fe–Fe interaction may change from ferromagnetic to antiferromagnetic at <inline-formula><tex-math notation=\"LaTeX\">$x$</tex-math></inline-formula> = 2.25 when the nitrogen content is low.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10082964/","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Single-phase $\varepsilon$-(FeCo)xN compound particles with $x$ = 2.25–2.48 were synthesized using ammonia gas nitrification. The mass magnetization $M$ at 10 K under a magnetic field of 9 T was 77 A$\cdot$m$^{2}$/kg, and Curie temperature $T$C was 100 K for $x$ = 2.48. These values decreased with increasing nitrogen content. Compared with $\varepsilon$-FexN, (FeCo)xN had significantly lower $M$ and $T$C values, even at comparable nitrogen content. Mössbauer spectroscopy suggests that the magnetic moment of Co decreases with increasing nitrogen content and disappears at approximately $x$ = 2.35, even at the lowest measurement temperature of $T$ = 3 K. Griffiths phaselike magnetic behavior was observed in the temperature dependence of magnetic susceptibility. The experimental results indicate that the Fe–Fe interaction may change from ferromagnetic to antiferromagnetic at $x$ = 2.25 when the nitrogen content is low.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.