Elena A. Denisova;Lidia A. Chekanova;Sergey V. Komogortsev;Svetlana A. Satsuk;Ivan V. Nemtsev;Rauf S. Iskhakov;Sergey V. Semenov
{"title":"Magnetic Properties of 3d Metal Rods With Composition Gradients Produced by Electroless Deposition","authors":"Elena A. Denisova;Lidia A. Chekanova;Sergey V. Komogortsev;Svetlana A. Satsuk;Ivan V. Nemtsev;Rauf S. Iskhakov;Sergey V. Semenov","doi":"10.1109/LMAG.2022.3163015","DOIUrl":null,"url":null,"abstract":"A comparative study of the magnetic properties of arrays of Co–Ni rods with different composition gradients (smooth or step-like) along the rod axes was carried out. Ordered arrays of Co–Ni nanorods with diameters up to 400 nm and 8 µm length were prepared by electroless plating into a porous nuclear-track-etched polycarbonate membrane. The gradient in Co and Ni composition was confirmed by energy-dispersive X-ray analysis. The variation of Co–Ni contents along the long axis of the rods correlates with the gradient of the magnetization within the rod. Magnetization reversal was studied by analyzing the angular dependence of coercivity and using micromagnetic simulations. For both types of gradient rods, reversal occurs by curling. The local magnetic anisotropy field of rods with a step-type gradient is significantly higher than that for rods with a smooth gradient.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"13 ","pages":"1-5"},"PeriodicalIF":1.1000,"publicationDate":"2022-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Magnetics Letters","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/9744571/","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
A comparative study of the magnetic properties of arrays of Co–Ni rods with different composition gradients (smooth or step-like) along the rod axes was carried out. Ordered arrays of Co–Ni nanorods with diameters up to 400 nm and 8 µm length were prepared by electroless plating into a porous nuclear-track-etched polycarbonate membrane. The gradient in Co and Ni composition was confirmed by energy-dispersive X-ray analysis. The variation of Co–Ni contents along the long axis of the rods correlates with the gradient of the magnetization within the rod. Magnetization reversal was studied by analyzing the angular dependence of coercivity and using micromagnetic simulations. For both types of gradient rods, reversal occurs by curling. The local magnetic anisotropy field of rods with a step-type gradient is significantly higher than that for rods with a smooth gradient.
期刊介绍:
IEEE Magnetics Letters is a peer-reviewed, archival journal covering the physics and engineering of magnetism, magnetic materials, applied magnetics, design and application of magnetic devices, bio-magnetics, magneto-electronics, and spin electronics. IEEE Magnetics Letters publishes short, scholarly articles of substantial current interest.
IEEE Magnetics Letters is a hybrid Open Access (OA) journal. For a fee, authors have the option making their articles freely available to all, including non-subscribers. OA articles are identified as Open Access.