{"title":"Memory and Communication-in-Logic Using Vortex and Precessional Oscillations in a Magnetic Tunnel Junction","authors":"Sonal Shreya;Milad Zamani;Yaseer Rezaeiyan;Hamdam Ghanatian;Tim Böhnert;Alex S. Jenkins;Ricardo Ferreira;Hooman Farkhani;Farshad Moradi","doi":"10.1109/LMAG.2022.3224676","DOIUrl":null,"url":null,"abstract":"Wearable and implantable devices (WIDs) come with several separate blocks such as preprocessing units, memory, and data transmission blocks. Hence, in this letter, we present the concept of memory and communication-in-logic (MCL) using a magnetic tunnel junction (MTJ). Here, MTJ is presented as a memory device as well as an oscillator for communication purposes. Vortex-based spin-torque nanooscillators (V-STNO) and precessional STNOs (P-STNO) generate a microwave frequency range (a few hundred MHz to a few GHz) wherein the frequency readout technique using the spin-torque diode is implemented for memory read function. In this work, a 300 nm nanodisk V-STNO generates 296 and 312 MHz frequency for two states of chirality (a characteristic of magnetic vortex), respectively. These different frequencies can be sensed for a bit “0”/ “1” read out through which the data from WIDs can be transmitted in a more energy- and area-efficient way. The output power emission is 3.22 and 1.76 µW for bit “1” and “0,” respectively, for V-STNO, which is three orders of magnitude larger than that of P-STNO. Finally, we demonstrate that V-STNO can transmit data up to 10 m in the air medium, which is much longer than P-STNO (0.24 m).","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/9963571/","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
Wearable and implantable devices (WIDs) come with several separate blocks such as preprocessing units, memory, and data transmission blocks. Hence, in this letter, we present the concept of memory and communication-in-logic (MCL) using a magnetic tunnel junction (MTJ). Here, MTJ is presented as a memory device as well as an oscillator for communication purposes. Vortex-based spin-torque nanooscillators (V-STNO) and precessional STNOs (P-STNO) generate a microwave frequency range (a few hundred MHz to a few GHz) wherein the frequency readout technique using the spin-torque diode is implemented for memory read function. In this work, a 300 nm nanodisk V-STNO generates 296 and 312 MHz frequency for two states of chirality (a characteristic of magnetic vortex), respectively. These different frequencies can be sensed for a bit “0”/ “1” read out through which the data from WIDs can be transmitted in a more energy- and area-efficient way. The output power emission is 3.22 and 1.76 µW for bit “1” and “0,” respectively, for V-STNO, which is three orders of magnitude larger than that of P-STNO. Finally, we demonstrate that V-STNO can transmit data up to 10 m in the air medium, which is much longer than P-STNO (0.24 m).
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.