{"title":"Field-Free Line Magnetic Particle Imaging Magnet Design Using Nested Halbach Cylinders","authors":"Melike Ergor;Ayhan Bingolbali","doi":"10.1109/LMAG.2022.3159446","DOIUrl":null,"url":null,"abstract":"Magnetic particle imaging (MPI) is a novel imaging technique that is a promising candidate for practical use in the medical field. The field-free line (FFL) selection field method in MPI provides spatial encoding along a line, resulting in a faster acquisition time and enhanced sensitivity with increased signal-to-noise ratio. To obtain FFL, a magnet system was designed using nested Halbach rings with octagonal-shaped permanent magnets. In this specific study, simulation studies were implemented using this magnet system for a real case. For this purpose, gradient values and stabilities of the magnet system were calculated. In this investigation, a gradient field within 60 mm stability was obtained along each axis. The gradient field attained values up to 6.1 T/m, which is a highly important parameter for spatial resolution in MPI systems.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"13 ","pages":"1-4"},"PeriodicalIF":1.1000,"publicationDate":"2022-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Magnetics Letters","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/9735335/","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Magnetic particle imaging (MPI) is a novel imaging technique that is a promising candidate for practical use in the medical field. The field-free line (FFL) selection field method in MPI provides spatial encoding along a line, resulting in a faster acquisition time and enhanced sensitivity with increased signal-to-noise ratio. To obtain FFL, a magnet system was designed using nested Halbach rings with octagonal-shaped permanent magnets. In this specific study, simulation studies were implemented using this magnet system for a real case. For this purpose, gradient values and stabilities of the magnet system were calculated. In this investigation, a gradient field within 60 mm stability was obtained along each axis. The gradient field attained values up to 6.1 T/m, which is a highly important parameter for spatial resolution in MPI systems.
期刊介绍:
IEEE Magnetics Letters is a peer-reviewed, archival journal covering the physics and engineering of magnetism, magnetic materials, applied magnetics, design and application of magnetic devices, bio-magnetics, magneto-electronics, and spin electronics. IEEE Magnetics Letters publishes short, scholarly articles of substantial current interest.
IEEE Magnetics Letters is a hybrid Open Access (OA) journal. For a fee, authors have the option making their articles freely available to all, including non-subscribers. OA articles are identified as Open Access.