Previsão de demanda a médio prazo aplicada em dados reais do sistema de distribuição: uma comparação entre RNA e Lógica Fuzzy

Romero Álamo Oliveira de Medeiros, Bruno Golzio Navarro Winkeler, J.M.M. Villanueva, Y. M. Rodríguez, E. C. T. Macêdo, Helon David de Macedo
{"title":"Previsão de demanda a médio prazo aplicada em dados reais do sistema de distribuição: uma comparação entre RNA e Lógica Fuzzy","authors":"Romero Álamo Oliveira de Medeiros, Bruno Golzio Navarro Winkeler, J.M.M. Villanueva, Y. M. Rodríguez, E. C. T. Macêdo, Helon David de Macedo","doi":"10.18265/1517-03062015V1N31P75-85","DOIUrl":null,"url":null,"abstract":"Demand forecasting is an important tool to support decision-making in the planning of power systems, providing essential information to aid specialists in the electricity sector in the allocation of available resources. Methods based on computational intelligence have been used in demand forecasting for more than twenty years. The Artificial Neural Networks (ANN) and Fuzzy Logic are among the most widely used techniques. In this study, we developed two demand forecasting systems for a real substation by means of an RNA and a fuzzy inference system. The case at hand studied the Cajazeiras substation, located in Paraíba/Brazil and its active power values, between the years 2008 and 2013, obtained by measurements of a system data acquisition (SCADA), which formed the time series data.","PeriodicalId":31439,"journal":{"name":"Revista Principia","volume":"1 1","pages":"75-85"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Principia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18265/1517-03062015V1N31P75-85","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Demand forecasting is an important tool to support decision-making in the planning of power systems, providing essential information to aid specialists in the electricity sector in the allocation of available resources. Methods based on computational intelligence have been used in demand forecasting for more than twenty years. The Artificial Neural Networks (ANN) and Fuzzy Logic are among the most widely used techniques. In this study, we developed two demand forecasting systems for a real substation by means of an RNA and a fuzzy inference system. The case at hand studied the Cajazeiras substation, located in Paraíba/Brazil and its active power values, between the years 2008 and 2013, obtained by measurements of a system data acquisition (SCADA), which formed the time series data.
应用于实际配电系统数据的中期需求预测:ann与模糊逻辑的比较
需求预测是支持电力系统规划决策的重要工具,为电力部门的专家分配可用资源提供必要的信息。基于计算智能的方法已经在需求预测中应用了二十多年。人工神经网络(ANN)和模糊逻辑是应用最广泛的技术。在本研究中,我们开发了两个实际变电站的需求预测系统,分别采用RNA和模糊推理系统。本案例研究了位于Paraíba/巴西的Cajazeiras变电站及其2008年至2013年间的有功功率值,这些值是通过系统数据采集(SCADA)的测量获得的,该测量形成了时间序列数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
167
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信