Uniqueness, multiplicity and nondegeneracy of positive solutions to the Lane-Emden problem

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Houwang Li , Juncheng Wei , Wenming Zou
{"title":"Uniqueness, multiplicity and nondegeneracy of positive solutions to the Lane-Emden problem","authors":"Houwang Li ,&nbsp;Juncheng Wei ,&nbsp;Wenming Zou","doi":"10.1016/j.matpur.2023.09.001","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study the nearly critical Lane-Emden equations<span><span><span>(⁎)</span><span><math><mrow><mo>{</mo><mtable><mtr><mtd></mtd><mtd><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>=</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>p</mi><mo>−</mo><mi>ε</mi></mrow></msup><mspace></mspace></mtd><mtd><mtext>in</mtext><mspace></mspace><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><mi>u</mi><mo>&gt;</mo><mn>0</mn><mspace></mspace></mtd><mtd><mtext>in</mtext><mspace></mspace><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><mi>u</mi><mo>=</mo><mn>0</mn><mspace></mspace></mtd><mtd><mtext>on</mtext><mspace></mspace><mo>∂</mo><mi>Ω</mi><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> where <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> with <span><math><mi>N</mi><mo>≥</mo><mn>3</mn></math></span>, <span><math><mi>p</mi><mo>=</mo><mfrac><mrow><mi>N</mi><mo>+</mo><mn>2</mn></mrow><mrow><mi>N</mi><mo>−</mo><mn>2</mn></mrow></mfrac></math></span> and <span><math><mi>ε</mi><mo>&gt;</mo><mn>0</mn></math></span><span><span> is small. Our main result is that when Ω is a smooth bounded convex domain and the Robin function on Ω is a </span>Morse function, then for small </span><em>ε</em> the equation <span>(⁎)</span><span> has a unique solution, which is also nondegenerate. As for non-convex domain, we also obtain exact number of solutions to </span><span>(⁎)</span> under some conditions.</p><p>In general, the solutions of <span>(⁎)</span> may blow-up at multiple points <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>⋯</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> of Ω as <span><math><mi>ε</mi><mo>→</mo><mn>0</mn></math></span>. In particular, when Ω is convex, there must be a unique blow-up point (i.e., <span><math><mi>k</mi><mo>=</mo><mn>1</mn></math></span><span>). In this paper, by using the local Pohozaev identities and blow-up techniques, even having multiple blow-up points (non-convex domain), we can prove that such blow-up solution is unique and nondegenerate. Combining these conclusions, we finally obtain the uniqueness, multiplicity and nondegeneracy of solutions to </span><span>(⁎)</span>.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782423001228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we study the nearly critical Lane-Emden equations(⁎){Δu=upεinΩ,u>0inΩ,u=0onΩ, where ΩRN with N3, p=N+2N2 and ε>0 is small. Our main result is that when Ω is a smooth bounded convex domain and the Robin function on Ω is a Morse function, then for small ε the equation (⁎) has a unique solution, which is also nondegenerate. As for non-convex domain, we also obtain exact number of solutions to (⁎) under some conditions.

In general, the solutions of (⁎) may blow-up at multiple points a1,,ak of Ω as ε0. In particular, when Ω is convex, there must be a unique blow-up point (i.e., k=1). In this paper, by using the local Pohozaev identities and blow-up techniques, even having multiple blow-up points (non-convex domain), we can prove that such blow-up solution is unique and nondegenerate. Combining these conclusions, we finally obtain the uniqueness, multiplicity and nondegeneracy of solutions to (⁎).

Lane-Emden问题正解的唯一性、多重性和非一般性
在本文中,我们研究了近临界Lane-Emden方程(){-Δu=up-εinΩ,u>;0inΩ,u=0 on⏴Ω,其中Ω⊂RN的N≥3,p=N+2N−2和ε>;0很小。我们的主要结果是,当Ω是光滑有界凸域,Ω上的Robin函数是Morse函数时,对于小ε,方程()有一个独特的解决方案,也是非退化的。对于非凸域,我们还得到了在某些条件下(i)解的精确个数。通常,(·)的解可能在Ω的多个点a1、…、ak处爆炸为ε→0。特别是,当Ω是凸的时,必须有一个唯一的爆破点(即k=1)。本文利用局部Pohozaev恒等式和爆破技术,即使具有多个爆破点(非凸域),我们也可以证明这种爆破解是唯一的和不退化的。结合这些结论,我们最终得到了(?)解的唯一性、多重性和非一般性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信