{"title":"Uniqueness, multiplicity and nondegeneracy of positive solutions to the Lane-Emden problem","authors":"Houwang Li , Juncheng Wei , Wenming Zou","doi":"10.1016/j.matpur.2023.09.001","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study the nearly critical Lane-Emden equations<span><span><span>(⁎)</span><span><math><mrow><mo>{</mo><mtable><mtr><mtd></mtd><mtd><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>=</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>p</mi><mo>−</mo><mi>ε</mi></mrow></msup><mspace></mspace></mtd><mtd><mtext>in</mtext><mspace></mspace><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><mi>u</mi><mo>></mo><mn>0</mn><mspace></mspace></mtd><mtd><mtext>in</mtext><mspace></mspace><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><mi>u</mi><mo>=</mo><mn>0</mn><mspace></mspace></mtd><mtd><mtext>on</mtext><mspace></mspace><mo>∂</mo><mi>Ω</mi><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> where <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> with <span><math><mi>N</mi><mo>≥</mo><mn>3</mn></math></span>, <span><math><mi>p</mi><mo>=</mo><mfrac><mrow><mi>N</mi><mo>+</mo><mn>2</mn></mrow><mrow><mi>N</mi><mo>−</mo><mn>2</mn></mrow></mfrac></math></span> and <span><math><mi>ε</mi><mo>></mo><mn>0</mn></math></span><span><span> is small. Our main result is that when Ω is a smooth bounded convex domain and the Robin function on Ω is a </span>Morse function, then for small </span><em>ε</em> the equation <span>(⁎)</span><span> has a unique solution, which is also nondegenerate. As for non-convex domain, we also obtain exact number of solutions to </span><span>(⁎)</span> under some conditions.</p><p>In general, the solutions of <span>(⁎)</span> may blow-up at multiple points <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>⋯</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> of Ω as <span><math><mi>ε</mi><mo>→</mo><mn>0</mn></math></span>. In particular, when Ω is convex, there must be a unique blow-up point (i.e., <span><math><mi>k</mi><mo>=</mo><mn>1</mn></math></span><span>). In this paper, by using the local Pohozaev identities and blow-up techniques, even having multiple blow-up points (non-convex domain), we can prove that such blow-up solution is unique and nondegenerate. Combining these conclusions, we finally obtain the uniqueness, multiplicity and nondegeneracy of solutions to </span><span>(⁎)</span>.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782423001228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, we study the nearly critical Lane-Emden equations(⁎) where with , and is small. Our main result is that when Ω is a smooth bounded convex domain and the Robin function on Ω is a Morse function, then for small ε the equation (⁎) has a unique solution, which is also nondegenerate. As for non-convex domain, we also obtain exact number of solutions to (⁎) under some conditions.
In general, the solutions of (⁎) may blow-up at multiple points of Ω as . In particular, when Ω is convex, there must be a unique blow-up point (i.e., ). In this paper, by using the local Pohozaev identities and blow-up techniques, even having multiple blow-up points (non-convex domain), we can prove that such blow-up solution is unique and nondegenerate. Combining these conclusions, we finally obtain the uniqueness, multiplicity and nondegeneracy of solutions to (⁎).