On the global-in-time inviscid limit of the 3D degenerate compressible Navier-Stokes equations

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Yongcai Geng , Yachun Li , Shengguo Zhu
{"title":"On the global-in-time inviscid limit of the 3D degenerate compressible Navier-Stokes equations","authors":"Yongcai Geng ,&nbsp;Yachun Li ,&nbsp;Shengguo Zhu","doi":"10.1016/j.matpur.2023.09.010","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, the global-in-time inviscid limit of the three-dimensional (3D) isentropic compressible Navier-Stokes equations is considered. First, when viscosity coefficients are given as a constant multiple of density's power (<span><math><msup><mrow><mo>(</mo><msup><mrow><mi>ρ</mi></mrow><mrow><mi>ϵ</mi></mrow></msup><mo>)</mo></mrow><mrow><mi>δ</mi></mrow></msup></math></span> with <span><math><mi>δ</mi><mo>&gt;</mo><mn>1</mn></math></span>), for regular solutions to the corresponding Cauchy problem, via introducing one “quasi-symmetric hyperbolic”–“degenerate elliptic” coupled structure to control the behavior of the velocity near the vacuum, we establish the uniform energy estimates for the local sound speed in <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> and <span><math><msup><mrow><mo>(</mo><msup><mrow><mi>ρ</mi></mrow><mrow><mi>ϵ</mi></mrow></msup><mo>)</mo></mrow><mrow><mfrac><mrow><mi>δ</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></math></span> in <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> with respect to the viscosity coefficients for arbitrarily large time under some smallness assumption on the initial density. Second, by making full use of this structure's quasi-symmetric property and the weak smooth effect on solutions, we prove the strong convergence of the regular solutions of the degenerate viscous flow to that of the inviscid flow with vacuum in <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> for arbitrarily large time. It is worth pointing out that the result obtained here seems to be the first one on the global-in-time inviscid limit of solutions with large velocities and vacuum for compressible flow in 3D space without any symmetric assumption.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782423001319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the global-in-time inviscid limit of the three-dimensional (3D) isentropic compressible Navier-Stokes equations is considered. First, when viscosity coefficients are given as a constant multiple of density's power ((ρϵ)δ with δ>1), for regular solutions to the corresponding Cauchy problem, via introducing one “quasi-symmetric hyperbolic”–“degenerate elliptic” coupled structure to control the behavior of the velocity near the vacuum, we establish the uniform energy estimates for the local sound speed in H3 and (ρϵ)δ12 in H2 with respect to the viscosity coefficients for arbitrarily large time under some smallness assumption on the initial density. Second, by making full use of this structure's quasi-symmetric property and the weak smooth effect on solutions, we prove the strong convergence of the regular solutions of the degenerate viscous flow to that of the inviscid flow with vacuum in H2 for arbitrarily large time. It is worth pointing out that the result obtained here seems to be the first one on the global-in-time inviscid limit of solutions with large velocities and vacuum for compressible flow in 3D space without any symmetric assumption.

关于三维退化可压缩Navier-Stokes方程的全局时间无粘极限
本文考虑了三维等熵可压缩Navier-Stokes方程的全局无粘时极限。首先,当粘度系数被给定为密度幂的常数倍((ρõ)δ,其中δ>;1) ,对于相应Cauchy问题的正则解,通过引入一个“拟对称双曲”-“退化椭圆”耦合结构来控制真空附近的速度行为,在初始密度的一些小假设下,我们建立了H3中的局部声速和H2中的(ρõ)δ−12相对于任意大时间的粘性系数的均匀能量估计。其次,充分利用这种结构的拟对称性和对解的弱光滑效应,证明了简并粘性流的正则解在任意大时间内对H2中的真空无粘性流正则解的强收敛性。值得指出的是,在没有任何对称假设的情况下,本文得到的结果似乎是第一个关于三维空间中可压缩流的具有大速度和真空的解的全局时间无粘极限的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信