Stability threshold of Couette flow for 2D Boussinesq equations in Sobolev spaces

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Zhifei Zhang , Ruizhao Zi
{"title":"Stability threshold of Couette flow for 2D Boussinesq equations in Sobolev spaces","authors":"Zhifei Zhang ,&nbsp;Ruizhao Zi","doi":"10.1016/j.matpur.2023.09.003","DOIUrl":null,"url":null,"abstract":"<div><p><span>Consider the nonlinear stability of the Couette flow in the Boussinesq equations with vertical dissipation on </span><span><math><mi>T</mi><mo>×</mo><mi>R</mi></math></span>. We prove that if the initial perturbations <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>in</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mi>in</mi></mrow></msub></math></span> to the Couette flow <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>=</mo><msup><mrow><mo>(</mo><mi>y</mi><mo>,</mo><mn>0</mn><mo>)</mo></mrow><mrow><mo>⊤</mo></mrow></msup></math></span> and <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>=</mo><mn>1</mn></math></span>, respectively, satisfy <span><math><msub><mrow><mo>‖</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>in</mi></mrow></msub><mo>‖</mo></mrow><mrow><msup><mrow><mi>H</mi></mrow><mrow><mi>N</mi><mo>+</mo><mn>1</mn></mrow></msup></mrow></msub><mo>+</mo><msup><mrow><mi>ν</mi></mrow><mrow><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><msub><mrow><mo>‖</mo><msub><mrow><mi>θ</mi></mrow><mrow><mi>in</mi></mrow></msub><mo>‖</mo></mrow><mrow><msup><mrow><mi>H</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></msub><mo>+</mo><msup><mrow><mi>ν</mi></mrow><mrow><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mrow></msup><msub><mrow><mo>‖</mo><mo>|</mo><msub><mrow><mo>∂</mo></mrow><mrow><mi>x</mi></mrow></msub><msup><mrow><mo>|</mo></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mrow></msup><mi>θ</mi><mo>‖</mo></mrow><mrow><msup><mrow><mi>H</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></msub><mo>≪</mo><msup><mrow><mi>ν</mi></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mrow></msup></math></span>, <span><math><mi>N</mi><mo>&gt;</mo><mn>7</mn></math></span>, then the resulting solution remains close to the Couette flow in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> at the same order for all time.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782423001241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Consider the nonlinear stability of the Couette flow in the Boussinesq equations with vertical dissipation on T×R. We prove that if the initial perturbations uin and θin to the Couette flow vs=(y,0) and θs=1, respectively, satisfy uinHN+1+ν12θinHN+ν13|x|13θHNν13, N>7, then the resulting solution remains close to the Couette flow in L2 at the same order for all time.

Sobolev空间中二维Boussinesq方程Couette流的稳定性阈值
考虑T×R上具有垂直耗散的Boussinesq方程中Couette流的非线性稳定性。我们证明了如果Couette流中的初始扰动uin和θ分别为vs=(y,0)⊤和θs=1,则满足‖uin‖HN+1+Γ−12‖θ在‖HN+Γ-13‖|⏴x|13θ‖HN≪Γ13,N>;7,则所得溶液始终以相同的顺序保持接近L2中的Couette流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信