Hybrid Finite–Difference/Pseudospectral Methods for the Heston and Heston–Hull–White Partial Differential Equations

IF 0.8 4区 经济学 Q4 BUSINESS, FINANCE
Christian Hendricks, M. Ehrhardt, M. Günther
{"title":"Hybrid Finite–Difference/Pseudospectral Methods for the Heston and Heston–Hull–White Partial Differential Equations","authors":"Christian Hendricks, M. Ehrhardt, M. Günther","doi":"10.21314/JCF.2018.342","DOIUrl":null,"url":null,"abstract":"We propose a hybrid spatial finite-difference/pseudospectral discretization for European option-pricing problems under the Heston and Heston–Hull–White models. In the direction of the underlying asset, where the payoff profile is nonsmooth, we use a standard central second-order finite-difference scheme, whereas we use a Chebyshev collocation method in the other spatial dimensions. In the time domain, we employ alternating direction implicit schemes to efficiently decompose the system matrix into simpler one-dimensional problems. This approach allows us to compute numerical solutions, which are second-order accurate in time and exhibit spectral accuracy in the spatial domains except for the asset direction. The numerical experiments reveal that the proposed scheme outperforms the standard second-order finite-difference scheme in terms of accuracy versus runtime and shows an unconditionally stable behavior.","PeriodicalId":51731,"journal":{"name":"Journal of Computational Finance","volume":"1 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2016-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Finance","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.21314/JCF.2018.342","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 2

Abstract

We propose a hybrid spatial finite-difference/pseudospectral discretization for European option-pricing problems under the Heston and Heston–Hull–White models. In the direction of the underlying asset, where the payoff profile is nonsmooth, we use a standard central second-order finite-difference scheme, whereas we use a Chebyshev collocation method in the other spatial dimensions. In the time domain, we employ alternating direction implicit schemes to efficiently decompose the system matrix into simpler one-dimensional problems. This approach allows us to compute numerical solutions, which are second-order accurate in time and exhibit spectral accuracy in the spatial domains except for the asset direction. The numerical experiments reveal that the proposed scheme outperforms the standard second-order finite-difference scheme in terms of accuracy versus runtime and shows an unconditionally stable behavior.
Heston和Heston - hull - white偏微分方程的混合有限差分/伪谱方法
在Heston模型和Heston - hull - white模型下,提出了欧式期权定价问题的混合空间有限差分/伪谱离散化方法。在标的资产的方向上,如果收益曲线是非光滑的,我们使用标准的中心二阶有限差分格式,而在其他空间维度上我们使用Chebyshev搭配方法。在时域上,我们采用交替方向隐式格式将系统矩阵有效地分解为更简单的一维问题。这种方法使我们能够计算数值解,这些解在时间上是二阶精度的,并且在除资产方向外的空间域中表现出光谱精度。数值实验表明,该格式在精度和运行时间方面优于标准二阶有限差分格式,并具有无条件稳定的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
8
期刊介绍: The Journal of Computational Finance is an international peer-reviewed journal dedicated to advancing knowledge in the area of financial mathematics. The journal is focused on the measurement, management and analysis of financial risk, and provides detailed insight into numerical and computational techniques in the pricing, hedging and risk management of financial instruments. The journal welcomes papers dealing with innovative computational techniques in the following areas: Numerical solutions of pricing equations: finite differences, finite elements, and spectral techniques in one and multiple dimensions. Simulation approaches in pricing and risk management: advances in Monte Carlo and quasi-Monte Carlo methodologies; new strategies for market factors simulation. Optimization techniques in hedging and risk management. Fundamental numerical analysis relevant to finance: effect of boundary treatments on accuracy; new discretization of time-series analysis. Developments in free-boundary problems in finance: alternative ways and numerical implications in American option pricing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信