Noscapine protects OLN-93 oligodendrocytes from ischemia-reperfusion damage: Calcium and nitric oxide involvement.

S. Nadjafi, S. Ebrahimi, N. Rahbar‐Roshandel
{"title":"Noscapine protects OLN-93 oligodendrocytes from ischemia-reperfusion damage: Calcium and nitric oxide involvement.","authors":"S. Nadjafi, S. Ebrahimi, N. Rahbar‐Roshandel","doi":"10.1556/036.102.2015.4.2","DOIUrl":null,"url":null,"abstract":"This study was carried out to evaluate the effects of noscapine, a benzylisoquinoline alkaloid from opium poppy, on oligodendrocyte during ischemia/reperfusion-induced excitotoxic injury. Changes in intracellular calcium levels due to chemical ischemia and nitric oxide (NO) production during ischemia/reperfusion were evaluated as the hallmarks of ischemia-derived excitotoxic event. OLN-93 cell line (a permanent immature rat oligodendrocyte) was used as a model of oligodendrocyte. 30- or 60-minute-oxygen-glucose deprivation/24 hours reperfusion were used to induce excitotoxicity. MTT (3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide) assay was used to evaluate cell viability. Ratiometric fluorescence microscopy using Ca(2+)-sensitive indicator Fura-2/AM was utilized to assess intracellular calcium levels. NO production was evaluated by Griess method. Noscapine (4 μM) significantly attenuated intracellular Ca(2+) elevation (P < 0.001). Also, noscapine significantly decreased NO production during a 30-minute oxygen-glucose deprivation/reperfusion (P < 0.01). The inhibitory effect of noscapine (4 μM) on intracellular Ca(2+) was greater than ionotropic glutamate receptors antagonists. Noscapine is protective against ischemia/reperfusion-induced excitotoxic injury in OLN-93 oligodendrocyte. This protective effect seems to be related to attenuation of intracellular Ca(2+) overload and NO production.","PeriodicalId":7167,"journal":{"name":"Acta physiologica Hungarica","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1556/036.102.2015.4.2","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta physiologica Hungarica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1556/036.102.2015.4.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This study was carried out to evaluate the effects of noscapine, a benzylisoquinoline alkaloid from opium poppy, on oligodendrocyte during ischemia/reperfusion-induced excitotoxic injury. Changes in intracellular calcium levels due to chemical ischemia and nitric oxide (NO) production during ischemia/reperfusion were evaluated as the hallmarks of ischemia-derived excitotoxic event. OLN-93 cell line (a permanent immature rat oligodendrocyte) was used as a model of oligodendrocyte. 30- or 60-minute-oxygen-glucose deprivation/24 hours reperfusion were used to induce excitotoxicity. MTT (3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide) assay was used to evaluate cell viability. Ratiometric fluorescence microscopy using Ca(2+)-sensitive indicator Fura-2/AM was utilized to assess intracellular calcium levels. NO production was evaluated by Griess method. Noscapine (4 μM) significantly attenuated intracellular Ca(2+) elevation (P < 0.001). Also, noscapine significantly decreased NO production during a 30-minute oxygen-glucose deprivation/reperfusion (P < 0.01). The inhibitory effect of noscapine (4 μM) on intracellular Ca(2+) was greater than ionotropic glutamate receptors antagonists. Noscapine is protective against ischemia/reperfusion-induced excitotoxic injury in OLN-93 oligodendrocyte. This protective effect seems to be related to attenuation of intracellular Ca(2+) overload and NO production.
诺斯平保护OLN-93少突胶质细胞免受缺血再灌注损伤:钙和一氧化氮的参与。
本研究探讨了罂粟苯基异喹啉生物碱诺斯卡平对缺血/再灌注诱导的少突胶质细胞损伤的影响。化学缺血引起的细胞内钙水平的变化和缺血/再灌注期间一氧化氮(NO)的产生被评估为缺血源性兴奋毒性事件的标志。以OLN-93细胞系(永久未成熟大鼠少突胶质细胞)作为少突胶质细胞模型。采用30或60分钟氧糖剥夺/24小时再灌注法诱导兴奋性毒性。采用MTT(3-[4,5-二甲基噻唑-2-基]-2,5-二苯基溴化四唑)测定法测定细胞活力。采用钙(2+)敏感指示剂Fura-2/AM的比例荧光显微镜评估细胞内钙水平。采用Griess法测定NO产量。Noscapine (4 μM)显著降低细胞内Ca(2+)升高(P < 0.001)。noscapine在30min氧糖剥夺/再灌注期间显著降低NO的产生(P < 0.01)。noscapine (4 μM)对细胞内Ca(2+)的抑制作用大于异离子型谷氨酸受体拮抗剂。诺斯平对缺血/再灌注诱导的OLN-93少突胶质细胞兴奋毒性损伤具有保护作用。这种保护作用似乎与细胞内Ca(2+)过载和NO产生的衰减有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta physiologica Hungarica
Acta physiologica Hungarica 医学-生理学
自引率
0.00%
发文量
0
审稿时长
6.0 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信