{"title":"Application of idempotent algebra methods in genetic algorithm for solving the scheduling problem","authors":"Alexander M. Bulavchuk, Darya V. Semenova","doi":"10.17223/20710410/58/11","DOIUrl":null,"url":null,"abstract":"The resource-constrained project scheduling problem in monetary form is considered. The criterion for the optimal start schedule for each project activity is the maximum net present value, which fulfills the constraints on sufficiency of funds and takes into account the technological relationship between the activities. This problem is NP-hard in a strong sense. It is proved that the project schedule can be represented as a solution of a linear equation over an idempotent semiring. A sufficient condition has been established for the admissibility of the schedule in terms of the partial order of work and the duration of the project. It is proved that each of the project schedules can be represented as a product of a matrix of a special form, calculated on the basis of the partial order matrix of the project, and a vector from an idempotent semimodule. For the coordinates of the vector, upper and lower limits have been determined, taking into account the timing of the activity. A description of the genetic algorithm for solving the problem is given. The algorithm is based on the evolution of a population whose individuals represent solutions of an idempotent equation for a partial order matrix of the project. The computational experiments demonstrate the effectiveness of the algorithm.","PeriodicalId":42607,"journal":{"name":"Prikladnaya Diskretnaya Matematika","volume":"137 1","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Prikladnaya Diskretnaya Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17223/20710410/58/11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1
Abstract
The resource-constrained project scheduling problem in monetary form is considered. The criterion for the optimal start schedule for each project activity is the maximum net present value, which fulfills the constraints on sufficiency of funds and takes into account the technological relationship between the activities. This problem is NP-hard in a strong sense. It is proved that the project schedule can be represented as a solution of a linear equation over an idempotent semiring. A sufficient condition has been established for the admissibility of the schedule in terms of the partial order of work and the duration of the project. It is proved that each of the project schedules can be represented as a product of a matrix of a special form, calculated on the basis of the partial order matrix of the project, and a vector from an idempotent semimodule. For the coordinates of the vector, upper and lower limits have been determined, taking into account the timing of the activity. A description of the genetic algorithm for solving the problem is given. The algorithm is based on the evolution of a population whose individuals represent solutions of an idempotent equation for a partial order matrix of the project. The computational experiments demonstrate the effectiveness of the algorithm.
期刊介绍:
The scientific journal Prikladnaya Diskretnaya Matematika has been issued since 2008. It was registered by Federal Control Service in the Sphere of Communications and Mass Media (Registration Witness PI № FS 77-33762 in October 16th, in 2008). Prikladnaya Diskretnaya Matematika has been selected for coverage in Clarivate Analytics products and services. It is indexed and abstracted in SCOPUS and WoS Core Collection (Emerging Sources Citation Index). The journal is a quarterly. All the papers to be published in it are obligatorily verified by one or two specialists. The publication in the journal is free of charge and may be in Russian or in English. The topics of the journal are the following: 1.theoretical foundations of applied discrete mathematics – algebraic structures, discrete functions, combinatorial analysis, number theory, mathematical logic, information theory, systems of equations over finite fields and rings; 2.mathematical methods in cryptography – synthesis of cryptosystems, methods for cryptanalysis, pseudorandom generators, appreciation of cryptosystem security, cryptographic protocols, mathematical methods in quantum cryptography; 3.mathematical methods in steganography – synthesis of steganosystems, methods for steganoanalysis, appreciation of steganosystem security; 4.mathematical foundations of computer security – mathematical models for computer system security, mathematical methods for the analysis of the computer system security, mathematical methods for the synthesis of protected computer systems;[...]