An efficient measurement-driven sequential Monte Carlo multi-Bernoulli filter for multi-target filtering

Tong-yang Jiang, Mei-qin Liu, Xie Wang, Sen-lin Zhang
{"title":"An efficient measurement-driven sequential Monte Carlo multi-Bernoulli filter for multi-target filtering","authors":"Tong-yang Jiang, Mei-qin Liu, Xie Wang, Sen-lin Zhang","doi":"10.1631/jzus.C1400025","DOIUrl":null,"url":null,"abstract":"We propose an efficient measurement-driven sequential Monte Carlo multi-Bernoulli (SMC-MB) filter for multi-target filtering in the presence of clutter and missing detection. The survival and birth measurements are distinguished from the original measurements using the gating technique. Then the survival measurements are used to update both survival and birth targets, and the birth measurements are used to update only the birth targets. Since most clutter measurements do not participate in the update step, the computing time is reduced significantly. Simulation results demonstrate that the proposed approach improves the real-time performance without degradation of filtering performance.","PeriodicalId":49947,"journal":{"name":"Journal of Zhejiang University-Science C-Computers & Electronics","volume":"15 1","pages":"445 - 457"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1631/jzus.C1400025","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Zhejiang University-Science C-Computers & Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1631/jzus.C1400025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We propose an efficient measurement-driven sequential Monte Carlo multi-Bernoulli (SMC-MB) filter for multi-target filtering in the presence of clutter and missing detection. The survival and birth measurements are distinguished from the original measurements using the gating technique. Then the survival measurements are used to update both survival and birth targets, and the birth measurements are used to update only the birth targets. Since most clutter measurements do not participate in the update step, the computing time is reduced significantly. Simulation results demonstrate that the proposed approach improves the real-time performance without degradation of filtering performance.
一种有效的测量驱动序列蒙特卡罗多伯努利滤波器,用于多目标滤波
我们提出了一种有效的测量驱动序列蒙特卡罗多伯努利(SMC-MB)滤波器,用于存在杂波和缺失检测的多目标滤波。使用门控技术将生存和出生测量值与原始测量值区分开来。然后使用生存度量来更新生存目标和出生目标,而使用出生度量来仅更新出生目标。由于大多数杂波测量不参与更新步骤,因此大大减少了计算时间。仿真结果表明,该方法在不降低滤波性能的前提下提高了实时性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
2.66667 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信