{"title":"A framework for analysis of extended fuzzy logic","authors":"F. Sabahi, M. Akbarzadeh-T.","doi":"10.1631/jzus.C1300217","DOIUrl":null,"url":null,"abstract":"We address a framework for the analysis of extended fuzzy logic (FLe) and elaborate mainly the key characteristics of FLe by proving several qualification theorems and proposing a new mathematical tool named the A-granule. Specifically, we reveal that within FLe a solution in the presence of incomplete information approaches the one gained by complete information. It is also proved that the answers and their validities have a structural isomorphism within the same context. This relationship is then used to prove the representation theorem that addresses the rationality of FLe-based reasoning. As a consequence of the developed theoretical description of FLe, we assert that in order to solve a problem, having complete information is not a critical need; however, with more information, the answers achieved become more specific. Furthermore, reasoning based on FLe has the advantage of being computationally less expensive in the analysis of a given problem and is faster.","PeriodicalId":49947,"journal":{"name":"Journal of Zhejiang University-Science C-Computers & Electronics","volume":"15 1","pages":"584 - 591"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1631/jzus.C1300217","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Zhejiang University-Science C-Computers & Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1631/jzus.C1300217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
We address a framework for the analysis of extended fuzzy logic (FLe) and elaborate mainly the key characteristics of FLe by proving several qualification theorems and proposing a new mathematical tool named the A-granule. Specifically, we reveal that within FLe a solution in the presence of incomplete information approaches the one gained by complete information. It is also proved that the answers and their validities have a structural isomorphism within the same context. This relationship is then used to prove the representation theorem that addresses the rationality of FLe-based reasoning. As a consequence of the developed theoretical description of FLe, we assert that in order to solve a problem, having complete information is not a critical need; however, with more information, the answers achieved become more specific. Furthermore, reasoning based on FLe has the advantage of being computationally less expensive in the analysis of a given problem and is faster.