Mangarova D, Brangsch J, Möckel J, Kader A, Kaufmann Jo, Ludwig A, Taupitz M, Hamm B, Makowski Mr
{"title":"Current trends in molecular magnetic resonance imaging of the extracellular matrix in atherosclerosis","authors":"Mangarova D, Brangsch J, Möckel J, Kader A, Kaufmann Jo, Ludwig A, Taupitz M, Hamm B, Makowski Mr","doi":"10.15761/JTS.1000393","DOIUrl":null,"url":null,"abstract":"Atherosclerosis is the underlying pathology of the majority of cardiovascular events in the Western world. It is well established that both the cellular and extracellular components of the arterial wall undergo morphological changes during plaque development. The extracellular matrix (ECM), a network of various macromolecules such as collagen, proteoglycans, elastin and fibrin, not only provides structural support for the vessel wall, but plays also a key role for biological signaling and cell interactions. Current standard clinical imaging modalities are limited to detecting anatomical changes in atherosclerosis. In recent years, molecular magnetic resonance imaging (MRI) has emerged as a promising in vivo alternative. Molecular MRI enables the visualization of biological changes in the formation and progression of plaques and the development of novel ECM-targeting MRI contrast agents has been on the rise. This review presents a summary of the recent advancements in the field of molecular probes for ECM imaging in the context of atherosclerosis.","PeriodicalId":74000,"journal":{"name":"Journal of translational science","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of translational science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15761/JTS.1000393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Atherosclerosis is the underlying pathology of the majority of cardiovascular events in the Western world. It is well established that both the cellular and extracellular components of the arterial wall undergo morphological changes during plaque development. The extracellular matrix (ECM), a network of various macromolecules such as collagen, proteoglycans, elastin and fibrin, not only provides structural support for the vessel wall, but plays also a key role for biological signaling and cell interactions. Current standard clinical imaging modalities are limited to detecting anatomical changes in atherosclerosis. In recent years, molecular magnetic resonance imaging (MRI) has emerged as a promising in vivo alternative. Molecular MRI enables the visualization of biological changes in the formation and progression of plaques and the development of novel ECM-targeting MRI contrast agents has been on the rise. This review presents a summary of the recent advancements in the field of molecular probes for ECM imaging in the context of atherosclerosis.