{"title":"A Profound Relationship between Circadian Rhythm Dysfunction and Cancer Progression: An Approach to Exploration.","authors":"S. Samanta","doi":"10.1615/critrevoncog.2021039731","DOIUrl":null,"url":null,"abstract":"Circadian (~ 24-hour) rhythm has been observed in all living organisms. In humans, the circadian system governs different physiological functions such as metabolism, sleep-wake cycle, body temperature, hormone secretion, and cellular proliferation. The suprachiasmatic nucleus (SCN) of the anterior hypothalamus is the principal circadian pacemaker. The SCN receives input signals primarily from the retinohypothalamic tract (RHT), sends output signals to different parts of the hypothalamus, pineal gland, and the peripheral clocks through the neural or humoral network. The functions of the circadian clock are mediated by the rhythmic expression of the core clock genes through a complex feedback loop. Disruption of clock functions influences the development of several pathologic conditions, including cancer, shift work, chronic or acute jet lag, and light-at-night affect the circadian activity, leading to development of several physiological disorders, more specifically cancer. Circadian dysfunction alters the expression of core clock genes that promote the deregulation of the cell cycle, increase cell proliferation and survival, decrease apoptotic activity, alter metabolic functions, increase metastatic property, collectively induces cancer progression.","PeriodicalId":35617,"journal":{"name":"Critical Reviews in Oncogenesis","volume":"26 3 1","pages":"1-41"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Oncogenesis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/critrevoncog.2021039731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 1
Abstract
Circadian (~ 24-hour) rhythm has been observed in all living organisms. In humans, the circadian system governs different physiological functions such as metabolism, sleep-wake cycle, body temperature, hormone secretion, and cellular proliferation. The suprachiasmatic nucleus (SCN) of the anterior hypothalamus is the principal circadian pacemaker. The SCN receives input signals primarily from the retinohypothalamic tract (RHT), sends output signals to different parts of the hypothalamus, pineal gland, and the peripheral clocks through the neural or humoral network. The functions of the circadian clock are mediated by the rhythmic expression of the core clock genes through a complex feedback loop. Disruption of clock functions influences the development of several pathologic conditions, including cancer, shift work, chronic or acute jet lag, and light-at-night affect the circadian activity, leading to development of several physiological disorders, more specifically cancer. Circadian dysfunction alters the expression of core clock genes that promote the deregulation of the cell cycle, increase cell proliferation and survival, decrease apoptotic activity, alter metabolic functions, increase metastatic property, collectively induces cancer progression.
期刊介绍:
The journal is dedicated to extensive reviews, minireviews, and special theme issues on topics of current interest in basic and patient-oriented cancer research. The study of systems biology of cancer with its potential for molecular level diagnostics and treatment implies competence across the sciences and an increasing necessity for cancer researchers to understand both the technology and medicine. The journal allows readers to adapt a better understanding of various fields of molecular oncology. We welcome articles on basic biological mechanisms relevant to cancer such as DNA repair, cell cycle, apoptosis, angiogenesis, tumor immunology, etc.