{"title":"DIVERGENCE BETWEEN SUBSPECIES GROUPS OF SWAINSON'S THRUSH (CATHARUS USTULATUS USTULATUS AND C. U. SWAINSONI)","authors":"K. Ruegg","doi":"10.1642/0078-6594(2007)63[67:DBSGOS]2.0.CO;2","DOIUrl":null,"url":null,"abstract":"—Swainson’s Thrush (Catharus ustulatus) is a long-distance Nearctic–Neotropical migrant that includes two major subspecies groups: the russet-backed group (C. u. ustulatus) of the Pacifi c Coast and the olive-backed inland group (C. u. swainsoni) (American Ornithologists’ Union [AOU] 1998, Evans Mack and Yong 2000). The two groups are most easily distinguished by diff erences in plumage characteristics, breeding and wintering location, and some vocalizations (Evans Mack and Yong 2000). Historical controversy over the taxonomic treatment of the ustulatus and swainsoni groups suggests that they have previously been considered on the border between subspecies and recently diverged sister species (reviewed in Bond 1963). Several authors emphasize the diff erences between the groups in breeding habitat and the lack of intergradation in regions where they co-occur (Bent 1949, Phillips 1991). Other authors emphasize their similarities, citing extensive intergradation along the eastern slope of the Sierra Nevada (Grinnell and Miller 1944). In the past decade, a number of studies have brought further clarity to the extent of genetic, behavioral, ecological, and acoustic divergence between the ustulatus and swainsoni subspecies groups. Here, I review these recent advances in our knowledge, identify future research questions, and discuss potential implications of divergence on the taxonomic treatment of the two groups according to the AOU’s guidelines for naming species (AOU 1998, Johnson et al. 1999). Received, accepted. Resumen.—Catharus ustulatus es un migrador de larga distacia, Neartico–Neotropical. Incluye dos grupos importantes de subespecies: en la costa del Pacífi co, el grupo de “espalda café-rojizo”, C. u. ustulatus, y, en el interior, el grupo de “espalda olivacea”, C. u. swainsoni (American Ornithologists’ Union 1998, Evans Mack and Yong 2000). Ambos grupos se diferencian fácilmente por las caracteristicas del plumaje, sitios de reproducción y área de invernada, además de vocalizaciones (Evans Mack and Yong 2000). La controversia sobre el tratamiento taxonómico de los grupos ustulatus y swainsoni, sugiere que han sido previamente considerados en el límite entre subespecies y especies hermanas que recientemente divergieron (revizado en Bond 1963). Varios autores enfatizan las diferencias entre los grupos en áreas de reproducción y la falta de intergradación en las regiones en que coexisten (Bent 1949, Phillips 1991). Otros autores subrayan sus similitudes, aludiendo además a una extensiva intergradación en la vertiente este de la Sierra Nevada (Grinnell and Miller 1944). En la década pasada, varios estudios clarifi caron los niveles de divergencia genética, de comportamiento, acústicas y ecológica, entre los grupos de subespecie ustulatus y swainsoni. En este estudio, reviso los trabajos anteriores identifi cando futuras preguntas de investigación, y discuto las implicaciones taxonómicas para ambos grupos de acuerdo con las reglas establecidas por la Unión de Ornitólogos Americanos (American Ornithologists’ Union 1998, Johnson et al. 1999). Evolutionary History Recent genetic data have helped shed light on the evolutionary history within the genus Catharus as well as on intraspecifi c variation within the Swainson’s Thrush (C. ustulatus). Two independently derived molecular phylogenies of the genus Catharus using diff erent loci suggest that the Swainson’s Thrush is the oldest lineage in the genus and is sister to all other species of Catharus, including several resident and short-distance migratory species from the Neotropics (Outlaw et al. 2003, Winker and 1E-mail: kruegg@berkeley.edu ORNITHOLOGICAL MONOGRAPHS NO. 63 68 Pruett 2006). The fi ve morphologically similar long-distance migratory species within the genus Catharus do not form a monophyletic clade, which indicates that migratory behavior has evolved multiple times within the genus and that the morphology of the North American long-distance migratory species exhibits strong evolutionary convergence (Winker and Pruett 2006). Outlaw et al. (2003) suggested that the Swainson’s Thrush diverged from other Catharus species ~4 mya, and the combined data sets indicate that species of Catharus most likely diverged somewhere in the Neotropics. An analysis of population structure within the Swainson’s Thrush (Ruegg and Smith 2002) using a rapidly evolving region of the mitochondrial genome, the control region, focused on genetic diff erentiation between the two major subspecies groups (Fig. 1): the russet-backed group of the Pacifi c Coast (C. u. ustulatus) and the olive-backed inland group (C. u. swainsoni) (American Ornithologists’ Union [AOU] 1998, Evans Mack and Yong 2000). These data showed that divergence between the subspecies groups is lower than reported levels of divergence between many sister species, but similar to estimates of divergence between well-diff erentiated subspecies of birds. Individuals of ustulatus and swainsoni from across the breeding range are separated by fi ve diagnostic mutations with a net sequence divergence of 0.7% (Fig. 2; Ruegg and Smith 2002). By comparison, Johnson and Cicero (2004) found that estimates of mitochondrial DNA (mtDNA) sequence divergence in 39 pairs of avian sister species ranged from 0.0% to 8.2%, with an average divergence of 1.9%. Alternatively, control-region divergence between some well-diff erentiated subspecies ranges from 0.07% to 4.8%: 0.07% between Brewer’s Sparrow (Spizella breweri breweri) and Timberline Sparrow (S. b. taverneri) subspecies Fig. 1. Breeding and wintering ranges of coastal ustulatus (black) and inland swainsoni (gray) subspecies groups and potential contact zones (black and white stripes) in Swainson’s Thrush (based on a range map from the Cornell Laboratory of Ornithology, with range data by Nature-Serve). DIVERGENCE IN SWAINSON’S THRUSH 69 (Klicka et al. 1999), 0.1% between Bluethroat (Luscinia svecica) subspecies (Questiau et al. 1998), and 1.7–4.8% between seven subspecies of Common Chaffi nch (Fringilla coelebs; Marshall and Baker 1998). Nuclear genetic distances between ustulatus and swainsoni populations from the Pacifi c Northwest of North America (two ustulatus, two swainsoni, and one mixed population) are lower than microsatellite genetic distances between other designated species but within the range of genetic distances between other subspecies and populations. Microsatellitebased genetic distances, in which an FST of 1 represents no gene fl ow and an FST of 0 represents complete mixing, ranged from 0.018 to 0.043 between pure ustulatus and swainsoni populations (Ruegg et al. 2006b). In comparison, FST-based estimates of genetic distance among some species of birds range from 0.054 (Shy Albatross [Thalassarche cauta] and Whitecapped Albatross [T. steadi]; Abbott and Double 2003) to 0.069 (fi ve species of gulls [Larus spp.]; Crochet et al. 2003), whereas FST-based genetic distances among some well-diff erentiated subspecies and populations range from 0.014 to 0.075 (0.014 for populations of Yellow Warblers [Dendroica petechia] from across North America [Gibbs et al. 2000]; 0.018 among populations of Chestnut-backed Chickadees [Poecile rufenscens; Burg et al. 2006]; and 0.075 among subspecies of North American Steller’s Jays [Cyanoci a stelleri; Burg et al. 2005]). In conclusion, mitochondrial and nuclear genetic divergence between the ustulatus and swainsoni subspecies groups is somewhat lower than estimates of genetic divergence between some other avian sister species, but is within the range of genetic divergence between other well-defi ned subspecies of birds. It is generally accepted that divergence between many well-diff erentiated subspecies and recently diverged sister species of birds can be att ributed to geographic isolation during the midto late Pleistocene (Avise and Walker 1998, Johnson and Cicero 2004, Lovett e 2005). Paleoecological data suggest that suitable songbird habitat was present in the east and west, south of the glacier’s edge, and that the center of the country was occupied by tundra and desert that likely would have been inhospitable to a songbird (Pielou 1991). Genetic data combined with climate models of the distribution of the ustulatus and swainsoni subspecies groups at the last glacial maximum (LGM) are concordant with paleoecological data and suggest that the most likely distribution of populations at the LGM would have been western coastal and southeastern regions (Ruegg et al. 2006a; Fig. 3). In light of the hypothesized distribution at the LGM, regions of parapatry between the ustulatus and swainsoni subspecies groups likely represent regions of secondary contact following postglacial range expansions. Fig. 2. Summary of genetic analysis based on mtDNA control-region haplotypes from Ruegg and Smith (2002). (A) Frequency of coastal ustulatus (white circles) and inland swainsoni (black circles) haplotypes in 17 breeding populations. (B) Haplotype network with bars across branches indicating single nucleotide changes. Four sizes of circle are used to represent the number of individuals sharing the same haplotype (smallest, 1 individual; medium-small, 2–4 individuals; medium-large, 5–11 individuals; largest, 44 individuals). ORNITHOLOGICAL MONOGRAPHS NO. 63 70","PeriodicalId":54665,"journal":{"name":"Ornithological Monographs","volume":"63 1","pages":"67-77"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ornithological Monographs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1642/0078-6594(2007)63[67:DBSGOS]2.0.CO;2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22
Abstract
—Swainson’s Thrush (Catharus ustulatus) is a long-distance Nearctic–Neotropical migrant that includes two major subspecies groups: the russet-backed group (C. u. ustulatus) of the Pacifi c Coast and the olive-backed inland group (C. u. swainsoni) (American Ornithologists’ Union [AOU] 1998, Evans Mack and Yong 2000). The two groups are most easily distinguished by diff erences in plumage characteristics, breeding and wintering location, and some vocalizations (Evans Mack and Yong 2000). Historical controversy over the taxonomic treatment of the ustulatus and swainsoni groups suggests that they have previously been considered on the border between subspecies and recently diverged sister species (reviewed in Bond 1963). Several authors emphasize the diff erences between the groups in breeding habitat and the lack of intergradation in regions where they co-occur (Bent 1949, Phillips 1991). Other authors emphasize their similarities, citing extensive intergradation along the eastern slope of the Sierra Nevada (Grinnell and Miller 1944). In the past decade, a number of studies have brought further clarity to the extent of genetic, behavioral, ecological, and acoustic divergence between the ustulatus and swainsoni subspecies groups. Here, I review these recent advances in our knowledge, identify future research questions, and discuss potential implications of divergence on the taxonomic treatment of the two groups according to the AOU’s guidelines for naming species (AOU 1998, Johnson et al. 1999). Received, accepted. Resumen.—Catharus ustulatus es un migrador de larga distacia, Neartico–Neotropical. Incluye dos grupos importantes de subespecies: en la costa del Pacífi co, el grupo de “espalda café-rojizo”, C. u. ustulatus, y, en el interior, el grupo de “espalda olivacea”, C. u. swainsoni (American Ornithologists’ Union 1998, Evans Mack and Yong 2000). Ambos grupos se diferencian fácilmente por las caracteristicas del plumaje, sitios de reproducción y área de invernada, además de vocalizaciones (Evans Mack and Yong 2000). La controversia sobre el tratamiento taxonómico de los grupos ustulatus y swainsoni, sugiere que han sido previamente considerados en el límite entre subespecies y especies hermanas que recientemente divergieron (revizado en Bond 1963). Varios autores enfatizan las diferencias entre los grupos en áreas de reproducción y la falta de intergradación en las regiones en que coexisten (Bent 1949, Phillips 1991). Otros autores subrayan sus similitudes, aludiendo además a una extensiva intergradación en la vertiente este de la Sierra Nevada (Grinnell and Miller 1944). En la década pasada, varios estudios clarifi caron los niveles de divergencia genética, de comportamiento, acústicas y ecológica, entre los grupos de subespecie ustulatus y swainsoni. En este estudio, reviso los trabajos anteriores identifi cando futuras preguntas de investigación, y discuto las implicaciones taxonómicas para ambos grupos de acuerdo con las reglas establecidas por la Unión de Ornitólogos Americanos (American Ornithologists’ Union 1998, Johnson et al. 1999). Evolutionary History Recent genetic data have helped shed light on the evolutionary history within the genus Catharus as well as on intraspecifi c variation within the Swainson’s Thrush (C. ustulatus). Two independently derived molecular phylogenies of the genus Catharus using diff erent loci suggest that the Swainson’s Thrush is the oldest lineage in the genus and is sister to all other species of Catharus, including several resident and short-distance migratory species from the Neotropics (Outlaw et al. 2003, Winker and 1E-mail: kruegg@berkeley.edu ORNITHOLOGICAL MONOGRAPHS NO. 63 68 Pruett 2006). The fi ve morphologically similar long-distance migratory species within the genus Catharus do not form a monophyletic clade, which indicates that migratory behavior has evolved multiple times within the genus and that the morphology of the North American long-distance migratory species exhibits strong evolutionary convergence (Winker and Pruett 2006). Outlaw et al. (2003) suggested that the Swainson’s Thrush diverged from other Catharus species ~4 mya, and the combined data sets indicate that species of Catharus most likely diverged somewhere in the Neotropics. An analysis of population structure within the Swainson’s Thrush (Ruegg and Smith 2002) using a rapidly evolving region of the mitochondrial genome, the control region, focused on genetic diff erentiation between the two major subspecies groups (Fig. 1): the russet-backed group of the Pacifi c Coast (C. u. ustulatus) and the olive-backed inland group (C. u. swainsoni) (American Ornithologists’ Union [AOU] 1998, Evans Mack and Yong 2000). These data showed that divergence between the subspecies groups is lower than reported levels of divergence between many sister species, but similar to estimates of divergence between well-diff erentiated subspecies of birds. Individuals of ustulatus and swainsoni from across the breeding range are separated by fi ve diagnostic mutations with a net sequence divergence of 0.7% (Fig. 2; Ruegg and Smith 2002). By comparison, Johnson and Cicero (2004) found that estimates of mitochondrial DNA (mtDNA) sequence divergence in 39 pairs of avian sister species ranged from 0.0% to 8.2%, with an average divergence of 1.9%. Alternatively, control-region divergence between some well-diff erentiated subspecies ranges from 0.07% to 4.8%: 0.07% between Brewer’s Sparrow (Spizella breweri breweri) and Timberline Sparrow (S. b. taverneri) subspecies Fig. 1. Breeding and wintering ranges of coastal ustulatus (black) and inland swainsoni (gray) subspecies groups and potential contact zones (black and white stripes) in Swainson’s Thrush (based on a range map from the Cornell Laboratory of Ornithology, with range data by Nature-Serve). DIVERGENCE IN SWAINSON’S THRUSH 69 (Klicka et al. 1999), 0.1% between Bluethroat (Luscinia svecica) subspecies (Questiau et al. 1998), and 1.7–4.8% between seven subspecies of Common Chaffi nch (Fringilla coelebs; Marshall and Baker 1998). Nuclear genetic distances between ustulatus and swainsoni populations from the Pacifi c Northwest of North America (two ustulatus, two swainsoni, and one mixed population) are lower than microsatellite genetic distances between other designated species but within the range of genetic distances between other subspecies and populations. Microsatellitebased genetic distances, in which an FST of 1 represents no gene fl ow and an FST of 0 represents complete mixing, ranged from 0.018 to 0.043 between pure ustulatus and swainsoni populations (Ruegg et al. 2006b). In comparison, FST-based estimates of genetic distance among some species of birds range from 0.054 (Shy Albatross [Thalassarche cauta] and Whitecapped Albatross [T. steadi]; Abbott and Double 2003) to 0.069 (fi ve species of gulls [Larus spp.]; Crochet et al. 2003), whereas FST-based genetic distances among some well-diff erentiated subspecies and populations range from 0.014 to 0.075 (0.014 for populations of Yellow Warblers [Dendroica petechia] from across North America [Gibbs et al. 2000]; 0.018 among populations of Chestnut-backed Chickadees [Poecile rufenscens; Burg et al. 2006]; and 0.075 among subspecies of North American Steller’s Jays [Cyanoci a stelleri; Burg et al. 2005]). In conclusion, mitochondrial and nuclear genetic divergence between the ustulatus and swainsoni subspecies groups is somewhat lower than estimates of genetic divergence between some other avian sister species, but is within the range of genetic divergence between other well-defi ned subspecies of birds. It is generally accepted that divergence between many well-diff erentiated subspecies and recently diverged sister species of birds can be att ributed to geographic isolation during the midto late Pleistocene (Avise and Walker 1998, Johnson and Cicero 2004, Lovett e 2005). Paleoecological data suggest that suitable songbird habitat was present in the east and west, south of the glacier’s edge, and that the center of the country was occupied by tundra and desert that likely would have been inhospitable to a songbird (Pielou 1991). Genetic data combined with climate models of the distribution of the ustulatus and swainsoni subspecies groups at the last glacial maximum (LGM) are concordant with paleoecological data and suggest that the most likely distribution of populations at the LGM would have been western coastal and southeastern regions (Ruegg et al. 2006a; Fig. 3). In light of the hypothesized distribution at the LGM, regions of parapatry between the ustulatus and swainsoni subspecies groups likely represent regions of secondary contact following postglacial range expansions. Fig. 2. Summary of genetic analysis based on mtDNA control-region haplotypes from Ruegg and Smith (2002). (A) Frequency of coastal ustulatus (white circles) and inland swainsoni (black circles) haplotypes in 17 breeding populations. (B) Haplotype network with bars across branches indicating single nucleotide changes. Four sizes of circle are used to represent the number of individuals sharing the same haplotype (smallest, 1 individual; medium-small, 2–4 individuals; medium-large, 5–11 individuals; largest, 44 individuals). ORNITHOLOGICAL MONOGRAPHS NO. 63 70
斯温森画眉(Catharus ustulatus)是一种远距离的近北极-新热带候鸟,包括两个主要亚种群:太平洋沿岸的赤褐色画眉群(c . u. ustulatus)和橄榄色画眉群(c . u. swainsoni)(美国鸟类学家联盟[AOU] 1998, Evans Mack和Yong 2000)。这两个群体最容易通过羽毛特征、繁殖和越冬地点以及一些发声的差异来区分(Evans Mack和Yong 2000)。关于ustulatus和swainsoni类群的分类处理的历史争议表明,它们以前被认为是亚种和最近分离的姐妹种之间的边界(Bond 1963)。几位作者强调了不同种群在繁殖栖息地的差异,以及在它们共存的地区缺乏整合(Bent 1949, Phillips 1991)。其他作者强调了它们的相似之处,引用了内华达山脉东坡的广泛整合(Grinnell和Miller, 1944)。在过去的十年中,大量的研究进一步明确了乌氏亚种和swainsoni亚种之间的遗传、行为、生态和声学差异的程度。在这里,我回顾了这些最新的知识进展,确定了未来的研究问题,并根据AOU的物种命名指南(AOU 1998, Johnson et al. 1999)讨论了这两个群体的分类处理分歧的潜在影响。收到,接受。Resumen。-近热带-新热带地区的大距离移徙者catharus ustulatus包括重要的亚种群:雀鸟(costa Pacífi co),雀鸟(espalda camacimac -rojizo),雀鸟(usulatus),雀鸟(en el interior),雀鸟(espalda olivacea),雀鸟(C. u. swainsoni)(美国鸟类学家联合会1998,Evans Mack and Yong 2000)。Ambos组使用了不同的fácilmente polisticas del plumaje, sites de reproducción y área de invernada, además de vocalizaciones (Evans Mack and Yong 2000)。“有争议的问题是如何处理”taxonómico“有争议的问题是如何处理”,“有争议的问题是如何处理”,“有争议的问题是如何处理”,“有争议的问题是如何处理”,“有争议的问题是如何处理”。在不同的群体(áreas de reproducción和intergradación falta de intergradación)和不同的区域(不同的区域)共存(Bent 1949, Phillips 1991)。Otros autores subrayan和sus similar, aludiendo además和una extensiva intergradación en la vertiente este de la Sierra Nevada (Grinnell和Miller, 1944)。En la dsamicada pasada, varos studios clarifies de divergencia gensamicada, de comportamiento, acústicas y ecológica, entre los group de subespeciustulatus and swainsoni。En este estudio, reviso los trabajos anterres identifi cando futuras preguntas de investigación,通过讨论las implicaciones taxonómicas para ambos grupos de acuerdo con las reglas establecidas por la Unión de Ornitólogos americamericos(美国鸟类学家联盟1998,Johnson et al. 1999)。最近的遗传数据有助于揭示Catharus属的进化史以及Swainson 's Thrush (c . ustulatus)的种内变异。利用不同的位点对Catharus属进行的两个独立的分子系统发育研究表明,斯温森画眉是Catharus属中最古老的谱系,是所有其他Catharus物种的姐妹,包括来自新热带地区的几种常住和短距离迁徙物种(Outlaw et al. 2003, Winker and 1)。63 68 Pruett 2006)。5种形态相似的远距离迁徙物种在Catharus属内并没有形成一个单系分支,这表明迁徙行为在该属内进化了多次,并且北美远距离迁徙物种的形态表现出强烈的进化趋同(Winker和Pruett 2006)。Outlaw et al.(2003)认为,斯温森画眉与其他Catharus物种分化约4亿年前,综合数据集表明Catharus物种最有可能在新热带的某个地方分化。对斯温森画眉的种群结构进行了分析(Ruegg and Smith 2002),使用了线粒体基因组的一个快速进化区域,即控制区,重点分析了两个主要亚种群体之间的遗传差异(图1):太平洋海岸的黄褐色画眉群(c.u. ustulatus)和内陆的橄榄背画眉群(c.u. swainsoni)(美国鸟类学家联盟[AOU] 1998, Evans Mack and Yong 2000)。这些数据表明,亚种组之间的差异低于报告的许多姐妹种之间的差异水平,但与鸟类分化良好的亚种之间的差异估计相似。 斯温森画眉(Catharus ustulatus)是一种远距离的近北极-新热带候鸟,包括两个主要亚种群:太平洋沿岸的赤褐色画眉群(c . u. ustulatus)和橄榄色画眉群(c . u. swainsoni)(美国鸟类学家联盟[AOU] 1998, Evans Mack和Yong 2000)。这两个群体最容易通过羽毛特征、繁殖和越冬地点以及一些发声的差异来区分(Evans Mack和Yong 2000)。关于ustulatus和swainsoni类群的分类处理的历史争议表明,它们以前被认为是亚种和最近分离的姐妹种之间的边界(Bond 1963)。几位作者强调了不同种群在繁殖栖息地的差异,以及在它们共存的地区缺乏整合(Bent 1949, Phillips 1991)。其他作者强调了它们的相似之处,引用了内华达山脉东坡的广泛整合(Grinnell和Miller, 1944)。在过去的十年中,大量的研究进一步明确了乌氏亚种和swainsoni亚种之间的遗传、行为、生态和声学差异的程度。在这里,我回顾了这些最新的知识进展,确定了未来的研究问题,并根据AOU的物种命名指南(AOU 1998, Johnson et al. 1999)讨论了这两个群体的分类处理分歧的潜在影响。收到,接受。Resumen。-近热带-新热带地区的大距离移徙者catharus ustulatus包括重要的亚种群:雀鸟(costa Pacífi co),雀鸟(espalda camacimac -rojizo),雀鸟(usulatus),雀鸟(en el interior),雀鸟(espalda olivacea),雀鸟(C. u. swainsoni)(美国鸟类学家联合会1998,Evans Mack and Yong 2000)。Ambos组使用了不同的fácilmente polisticas del plumaje, sites de reproducción y área de invernada, además de vocalizaciones (Evans Mack and Yong 2000)。“有争议的问题是如何处理”taxonómico“有争议的问题是如何处理”,“有争议的问题是如何处理”,“有争议的问题是如何处理”,“有争议的问题是如何处理”,“有争议的问题是如何处理”。在不同的群体(áreas de reproducción和intergradación falta de intergradación)和不同的区域(不同的区域)共存(Bent 1949, Phillips 1991)。Otros autores subrayan和sus similar, aludiendo además和una extensiva intergradación en la vertiente este de la Sierra Nevada (Grinnell和Miller, 1944)。En la dsamicada pasada, varos studios clarifies de divergencia gensamicada, de comportamiento, acústicas y ecológica, entre los group de subespeciustulatus and swainsoni。En este estudio, reviso los trabajos anterres identifi cando futuras preguntas de investigación,通过讨论las implicaciones taxonómicas para ambos grupos de acuerdo con las reglas establecidas por la Unión de Ornitólogos americamericos(美国鸟类学家联盟1998,Johnson et al. 1999)。最近的遗传数据有助于揭示Catharus属的进化史以及Swainson 's Thrush (c . ustulatus)的种内变异。利用不同的位点对Catharus属进行的两个独立的分子系统发育研究表明,斯温森画眉是Catharus属中最古老的谱系,是所有其他Catharus物种的姐妹,包括来自新热带地区的几种常住和短距离迁徙物种(Outlaw et al. 2003, Winker and 1)。63 68 Pruett 2006)。5种形态相似的远距离迁徙物种在Catharus属内并没有形成一个单系分支,这表明迁徙行为在该属内进化了多次,并且北美远距离迁徙物种的形态表现出强烈的进化趋同(Winker和Pruett 2006)。Outlaw et al.(2003)认为,斯温森画眉与其他Catharus物种分化约4亿年前,综合数据集表明Catharus物种最有可能在新热带的某个地方分化。对斯温森画眉的种群结构进行了分析(Ruegg and Smith 2002),使用了线粒体基因组的一个快速进化区域,即控制区,重点分析了两个主要亚种群体之间的遗传差异(图1):太平洋海岸的黄褐色画眉群(c.u. ustulatus)和内陆的橄榄背画眉群(c.u. swainsoni)(美国鸟类学家联盟[AOU] 1998, Evans Mack and Yong 2000)。这些数据表明,亚种组之间的差异低于报告的许多姐妹种之间的差异水平,但与鸟类分化良好的亚种之间的差异估计相似。 在整个繁殖范围内,乌氏和swainsoni个体被5个诊断突变分开,净序列差异为0.7%(图2;Ruegg and Smith 2002)。通过比较,Johnson和Cicero(2004)发现,对39对鸟类姐妹种的线粒体DNA (mtDNA)序列差异的估计范围为0.0%至8.2%,平均差异为1.9%。另外,一些分化良好的亚种之间的控制区差异范围为0.07%至4.8%:布鲁尔麻雀(Spizella breweri breweri)和树线麻雀(S. b. taverneri)亚种之间的差异为0.07%(图1)。斯温森画眉的沿海乌鸫(黑色)和内陆swainsoni(灰色)亚种群和潜在接触区(黑白条纹)的繁殖和越冬范围(基于康奈尔鸟类学实验室的范围图,由自然服务提供的范围数据)。斯文森画眉69 (Klicka et al. 1999),蓝喉鸫(Luscinia svecica)亚种之间的差异为0.1% (Questiau et al. 1998),普通沙锥雀(Fringilla coelebs;Marshall and Baker, 1998)。北美太平洋西北地区2个乌苏里鱼、2个swainsoni和1个混合居群的乌苏里鱼和swainsoni居群之间的核遗传距离低于其他指定种之间的微卫星遗传距离,但在其他亚种和居群之间的遗传距离范围内。基于微卫星的遗传距离,FST为1表示没有基因流动,FST为0表示完全混合,在纯乌斯图拉鱼和swainsoni群体之间的范围为0.018至0.043 (Ruegg et al. 2006b)。相比之下,一些鸟类物种之间基于fst的遗传距离估计从0.054(害羞信天翁[Thalassarche cauta]和白头信天翁[T。steadi];Abbott and Double 2003)至0.069(5种鸥[Larus spp.];Crochet et al. 2003),而一些分化良好的亚种和种群之间基于fst的遗传距离范围为0.014至0.075(来自北美各地的黄莺[Dendroica petechia]种群为0.014 [Gibbs et al. 2000];栗子背山雀种群中0.018;Burg et al. 2006];在北美虎头鸦(Cyanoci a stelleri)亚种中为0.075;Burg et al. 2005])。综上所述,乌氏蜥和swainsoni亚种群之间的线粒体和核遗传差异略低于其他鸟类姐妹种之间的遗传差异,但在鸟类其他明确亚种之间的遗传差异范围内。人们普遍认为,许多分化良好的亚种和新近分化的姐妹种之间的分化可归因于更新世中后期的地理隔离(Avise and Walker 1998, Johnson and Cicero 2004, Lovett e 2005)。古生态学数据表明,在冰川边缘以南的东部和西部存在合适的鸣禽栖息地,而该国的中部被冻土带和沙漠所占据,可能不适合鸣禽居住(Pielou 1991)。遗传数据结合末次极盛期(LGM)的古生态数据与古生态数据一致,表明末次极盛期(LGM)最可能的种群分布在西部沿海和东南部地区(Ruegg et al. 2006;图3)根据LGM的假设分布,ustulatus和swainsoni亚种群之间的平行区域可能代表了冰川后范围扩大后的二次接触区域。图2所示。基于Ruegg和Smith (2002) mtDNA控制区单倍型的遗传分析综述。(A)在17个繁殖种群中沿海长尾鱼(白色圆圈)和内陆swainsoni(黑色圆圈)单倍型的频率。(B)单倍型网络,分支间的条表示单个核苷酸的变化。四种大小的圆圈表示具有相同单倍型的个体数量(最小的是1个个体;中型-小型,2-4个个体;中型大,5-11个;最大的,44个人)。鸟类学专论号。63 70 在整个繁殖范围内,乌氏和swainsoni个体被5个诊断突变分开,净序列差异为0.7%(图2;Ruegg and Smith 2002)。通过比较,Johnson和Cicero(2004)发现,对39对鸟类姐妹种的线粒体DNA (mtDNA)序列差异的估计范围为0.0%至8.2%,平均差异为1.9%。另外,一些分化良好的亚种之间的控制区差异范围为0.07%至4.8%:布鲁尔麻雀(Spizella breweri breweri)和树线麻雀(S. b. taverneri)亚种之间的差异为0.07%(图1)。斯温森画眉的沿海乌鸫(黑色)和内陆swainsoni(灰色)亚种群和潜在接触区(黑白条纹)的繁殖和越冬范围(基于康奈尔鸟类学实验室的范围图,由自然服务提供的范围数据)。斯文森画眉69 (Klicka et al. 1999),蓝喉鸫(Luscinia svecica)亚种之间的差异为0.1% (Questiau et al. 1998),普通沙锥雀(Fringilla coelebs;Marshall and Baker, 1998)。北美太平洋西北地区2个乌苏里鱼、2个swainsoni和1个混合居群的乌苏里鱼和swainsoni居群之间的核遗传距离低于其他指定种之间的微卫星遗传距离,但在其他亚种和居群之间的遗传距离范围内。基于微卫星的遗传距离,FST为1表示没有基因流动,FST为0表示完全混合,在纯乌斯图拉鱼和swainsoni群体之间的范围为0.018至0.043 (Ruegg et al. 2006b)。相比之下,一些鸟类物种之间基于fst的遗传距离估计从0.054(害羞信天翁[Thalassarche cauta]和白头信天翁[T。steadi];Abbott and Double 2003)至0.069(5种鸥[Larus spp.];Crochet et al. 2003),而一些分化良好的亚种和种群之间基于fst的遗传距离范围为0.014至0.075(来自北美各地的黄莺[Dendroica petechia]种群为0.014 [Gibbs et al. 2000];栗子背山雀种群中0.018;Burg et al. 2006];在北美虎头鸦(Cyanoci a stelleri)亚种中为0.075;Burg et al. 2005])。综上所述,乌氏蜥和swainsoni亚种群之间的线粒体和核遗传差异略低于其他鸟类姐妹种之间的遗传差异,但在鸟类其他明确亚种之间的遗传差异范围内。人们普遍认为,许多分化良好的亚种和新近分化的姐妹种之间的分化可归因于更新世中后期的地理隔离(Avise and Walker 1998, Johnson and Cicero 2004, Lovett e 2005)。古生态学数据表明,在冰川边缘以南的东部和西部存在合适的鸣禽栖息地,而该国的中部被冻土带和沙漠所占据,可能不适合鸣禽居住(Pielou 1991)。遗传数据结合末次极盛期(LGM)的古生态数据与古生态数据一致,表明末次极盛期(LGM)最可能的种群分布在西部沿海和东南部地区(Ruegg et al. 2006;图3)根据LGM的假设分布,ustulatus和swainsoni亚种群之间的平行区域可能代表了冰川后范围扩大后的二次接触区域。图2所示。基于Ruegg和Smith (2002) mtDNA控制区单倍型的遗传分析综述。(A)在17个繁殖种群中沿海长尾鱼(白色圆圈)和内陆swainsoni(黑色圆圈)单倍型的频率。(B)单倍型网络,分支间的条表示单个核苷酸的变化。四种大小的圆圈表示具有相同单倍型的个体数量(最小的是1个个体;中型-小型,2-4个个体;中型大,5-11个;最大的,44个人)。鸟类学专论号。63 70