Akib Javed, Mardia, N. Sumari, Muhammad Nasar Ahmad, Nayyer Saleem, M. Ali, Md. Enamul Huq, I. Ara, Jiabin Wang, Zhuoyang Yu, Bin Bai, Z. Shao
{"title":"Development of normalized soil area index for urban studies using remote sensing data","authors":"Akib Javed, Mardia, N. Sumari, Muhammad Nasar Ahmad, Nayyer Saleem, M. Ali, Md. Enamul Huq, I. Ara, Jiabin Wang, Zhuoyang Yu, Bin Bai, Z. Shao","doi":"10.15233/gfz.2023.40.2","DOIUrl":null,"url":null,"abstract":"This paper presents two novel spectral soil area indices to identify bare soil area and distinguish it more accurately from the urban impervious surface area (ISA). This study designs these indices based on medium spatial resolution remote sensing data from Landsat 8 OLI dataset. Extracting bare soil or urban ISA is more challenging than extracting water bodies or vegetation in multispectral Remote Sensing (RS). Bare soil and the urban ISA area often were mixed because of their spectral similarity in multispectral sensors. This study proposes Normalized Soil Area Index 1 (NSAI1) and Normalized Soil Area Index 2 (NSAI2) using typical multispectral bands. Experiments show that these two indices have an overall accuracy of around 90%. The spectral similarity index (SDI) shows these two indices have higher separability between soil area and ISA than previous indices. The result shows that percentile thresholds can effectively classify bare soil areas from the background. The combined use of both indices measured the soil area of the study area over 71 km2. Most importantly, proposed soil indices can refine urban ISA measurement accuracy in spatiotemporal studies.","PeriodicalId":50419,"journal":{"name":"Geofizika","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geofizika","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.15233/gfz.2023.40.2","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents two novel spectral soil area indices to identify bare soil area and distinguish it more accurately from the urban impervious surface area (ISA). This study designs these indices based on medium spatial resolution remote sensing data from Landsat 8 OLI dataset. Extracting bare soil or urban ISA is more challenging than extracting water bodies or vegetation in multispectral Remote Sensing (RS). Bare soil and the urban ISA area often were mixed because of their spectral similarity in multispectral sensors. This study proposes Normalized Soil Area Index 1 (NSAI1) and Normalized Soil Area Index 2 (NSAI2) using typical multispectral bands. Experiments show that these two indices have an overall accuracy of around 90%. The spectral similarity index (SDI) shows these two indices have higher separability between soil area and ISA than previous indices. The result shows that percentile thresholds can effectively classify bare soil areas from the background. The combined use of both indices measured the soil area of the study area over 71 km2. Most importantly, proposed soil indices can refine urban ISA measurement accuracy in spatiotemporal studies.
期刊介绍:
The Geofizika journal succeeds the Papers series (Radovi), which has been published since 1923 at the Geophysical Institute in Zagreb (current the Department of Geophysics, Faculty of Science, University of Zagreb).
Geofizika publishes contributions dealing with physics of the atmosphere, the sea and the Earth''s interior.