Dormancy and germination characteristics of Tarenaya hassleriana (Cleomaceae) seeds

IF 1.1 4区 农林科学 Q3 AGRONOMY
Zhao Ren-Fei, Shen Xue-Yang, Rong Zi-Han, Mou Jiao-Lin, Xu Li, Deng Zhi-Jun
{"title":"Dormancy and germination characteristics of Tarenaya hassleriana (Cleomaceae) seeds","authors":"Zhao Ren-Fei, Shen Xue-Yang, Rong Zi-Han, Mou Jiao-Lin, Xu Li, Deng Zhi-Jun","doi":"10.1590/2317-1545v45270437","DOIUrl":null,"url":null,"abstract":"Abstract: Elucidating the physiological and ecological mechanisms of seed dormancy and germination is of great significance for species conservation and the application of plant resources. Based on Baskin and Baskin’s classification system for seed dormancy, the cause of dormancy in Tarenaya hassleriana (Cleomaceae) seeds was studied using alternating temperature, cold moist stratification, dry storage, and GA3 soaking treatment. The results indicated that fresh mature T. hassleriana seeds had a combinational dormancy, including a physical dormancy and a type 2 non-deep physiological dormancy, and were photoblastic, with an optimal germination temperature of 35°C. In addition, fresh mature T. hassleriana seeds may be efficiently released from dormancy and promoted to germinate by an alternating temperature of 20 °C/30 °C, cold moist stratification, and cold moist stratification following dry storage. Furthermore, GA3 soaking treatment could also promote dormancy release and subsequent germination at 35 °C, and dry storage treatment could promote dormancy release and subsequent germination at 5-15 °C. These results also suggested that there were complex cross-talks among phytohormone, osmotic potential, and the temperature signaling regulatory pathways during dormancy release and germination of T. hassleriana seeds, which deserve further study.","PeriodicalId":17113,"journal":{"name":"Journal of Seed Science","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Seed Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1590/2317-1545v45270437","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract: Elucidating the physiological and ecological mechanisms of seed dormancy and germination is of great significance for species conservation and the application of plant resources. Based on Baskin and Baskin’s classification system for seed dormancy, the cause of dormancy in Tarenaya hassleriana (Cleomaceae) seeds was studied using alternating temperature, cold moist stratification, dry storage, and GA3 soaking treatment. The results indicated that fresh mature T. hassleriana seeds had a combinational dormancy, including a physical dormancy and a type 2 non-deep physiological dormancy, and were photoblastic, with an optimal germination temperature of 35°C. In addition, fresh mature T. hassleriana seeds may be efficiently released from dormancy and promoted to germinate by an alternating temperature of 20 °C/30 °C, cold moist stratification, and cold moist stratification following dry storage. Furthermore, GA3 soaking treatment could also promote dormancy release and subsequent germination at 35 °C, and dry storage treatment could promote dormancy release and subsequent germination at 5-15 °C. These results also suggested that there were complex cross-talks among phytohormone, osmotic potential, and the temperature signaling regulatory pathways during dormancy release and germination of T. hassleriana seeds, which deserve further study.
山楂种子的休眠和萌发特性
摘要:阐明种子休眠和萌发的生理生态机制对物种保护和植物资源利用具有重要意义。以Baskin和Baskin种子休眠分类系统为基础,采用交变温度、冷湿分层、干燥贮藏和GA3浸泡处理,研究了山蕨种子休眠的原因。结果表明,新鲜成熟的黑桫椤种子具有物理休眠和2型非深度生理休眠的组合休眠,为光敏休眠,最佳萌发温度为35℃。另外,在20°C/30°C交变温度、冷湿分层和干燥后的冷湿分层等条件下,可以有效地使新鲜成熟的哈氏柽柳种子从休眠状态中释放出来,促进其萌发。在35℃条件下,GA3浸泡处理也能促进休眠释放和后续萌发,在5 ~ 15℃条件下,干储处理能促进休眠释放和后续萌发。这些结果也表明,在黑豆种子休眠释放和萌发过程中,植物激素、渗透电位和温度信号调控通路之间存在复杂的交叉对话,值得进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Seed Science
Journal of Seed Science Agricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
2.00
自引率
30.00%
发文量
28
审稿时长
12 weeks
期刊介绍: From 2017 the Journal of Seed Science (JSS) will circulate online version only. Original scientific studies and communications, not yet published or submitted to another journal for publication and written in Portuguese or English, will be accepted for publication. For manuscripts submitted in English, the authors should provide an adequated version. The SCIENTIFIC COMMUNICATION is a category of scientific manuscript which describes a technique, an equipment, new species or observations and surveys of limited results. It has the same scientific rigor as the “Scientific Articles” and the same value as a publication. The classification of a manuscript as a SCIENTIFIC COMMUNICATION is based on its content and scientific merit but it can be a preliminary study, simple and not definitive on a certain subject, with publication justified by its uniqueness and contribution to the area. The Editorial Board of the JSS may invite leading authors of recognized reputation to compose specific Review Articles covering topics of their specialization that will convey to the scientific community the state-of-the-art knowledge related to the specific theme.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信