Sueny Kelly Santos de França, C. Siqueira, M. Guimarães, J. D. Machado
{"title":"Quantification and conceptual validation of the inoculum potential of Sclerotinia sclerotiorum in soybean and bean seeds","authors":"Sueny Kelly Santos de França, C. Siqueira, M. Guimarães, J. D. Machado","doi":"10.1590/2317-1545v43236031","DOIUrl":null,"url":null,"abstract":"Abstract: The fungus Sclerotinia sclerotiorum, the causal agent of white mold, is widespread throughout the world. The disease is considered to be one of the major diseases of soybean and bean crops in Brazil. The pathogen S. sclerotiorum is spread by soybean and bean seeds both in the form of sclerotia and dormant mycelium inside the seeds. The objective of this work was to evaluate the relationship between different potentials of S. sclerotiorum in soybean and bean seeds and the performance of these seeds, as well as to verify the localization and quantification of the inoculum of the pathogen in the seeds inoculated by Real-time PCR (qPCR), validating the term inoculum potential. Soybean and bean seeds were inoculated with the fungus by the osmotic conditioning method based on the exposure of the seeds to the fungus for periods of 24 h, 48 h, 72 h, and 96 h. Molecular analysis was carried out by means of qPCR in whole seeds and dissected in the integument, cotyledon and embryonic axis. The results showed that the effects of S. sclerotiorum on seed germination and vigor were progressive and proportional to the increases in inoculum potentials, since there was more severe damage to the seeds and consequently to the emerged plants at the highest potential (P96). The inoculum of the pathogen was found in all parts of the evaluated seeds, even at its lowest inoculum potential (P24), with an increasing DNA concentration, and the integument obtained a greater amount of DNA than the embryo, in comparison.","PeriodicalId":17113,"journal":{"name":"Journal of Seed Science","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Seed Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1590/2317-1545v43236031","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract: The fungus Sclerotinia sclerotiorum, the causal agent of white mold, is widespread throughout the world. The disease is considered to be one of the major diseases of soybean and bean crops in Brazil. The pathogen S. sclerotiorum is spread by soybean and bean seeds both in the form of sclerotia and dormant mycelium inside the seeds. The objective of this work was to evaluate the relationship between different potentials of S. sclerotiorum in soybean and bean seeds and the performance of these seeds, as well as to verify the localization and quantification of the inoculum of the pathogen in the seeds inoculated by Real-time PCR (qPCR), validating the term inoculum potential. Soybean and bean seeds were inoculated with the fungus by the osmotic conditioning method based on the exposure of the seeds to the fungus for periods of 24 h, 48 h, 72 h, and 96 h. Molecular analysis was carried out by means of qPCR in whole seeds and dissected in the integument, cotyledon and embryonic axis. The results showed that the effects of S. sclerotiorum on seed germination and vigor were progressive and proportional to the increases in inoculum potentials, since there was more severe damage to the seeds and consequently to the emerged plants at the highest potential (P96). The inoculum of the pathogen was found in all parts of the evaluated seeds, even at its lowest inoculum potential (P24), with an increasing DNA concentration, and the integument obtained a greater amount of DNA than the embryo, in comparison.
期刊介绍:
From 2017 the Journal of Seed Science (JSS) will circulate online version only.
Original scientific studies and communications, not yet published or submitted to another journal for publication and written in Portuguese or English, will be accepted for publication. For manuscripts submitted in English, the authors should provide an adequated version.
The SCIENTIFIC COMMUNICATION is a category of scientific manuscript which describes a technique, an equipment, new species or observations and surveys of limited results. It has the same scientific rigor as the “Scientific Articles” and the same value as a publication. The classification of a manuscript as a SCIENTIFIC COMMUNICATION is based on its content and scientific merit but it can be a preliminary study, simple and not definitive on a certain subject, with publication justified by its uniqueness and contribution to the area.
The Editorial Board of the JSS may invite leading authors of recognized reputation to compose specific Review Articles covering topics of their specialization that will convey to the scientific community the state-of-the-art knowledge related to the specific theme.