{"title":"Sodium-free mixed alkali bioactive glasses","authors":"D. Brauer, R. Brückner, M. Tylkowski, L. Hupa","doi":"10.1515/bglass-2016-0012","DOIUrl":null,"url":null,"abstract":"Abstract Two sodium-free mixed alkali series of bioactive glasses based on compositions Bioglass 45S5 and ICIE1, containing lithium and/or potassium as alkali ions, were prepared by a melt-quench route. Thermal properties showed the well-known mixed alkali effect, with glass transition and crystallisation temperatures and the coefficient of thermal expansion going either through a minimum or a maximum for the mixed alkali composition, resulting in a wider processing window. Ion release, by contrast, was controlled by the modifier ionic radius, with ion release rates in dynamic and static dissolution studies increasing for potassium-substituted glasses compared to the composition containing lithium as the only alkali ion. This was caused by pronounced changes in oxygen packing density and molar volume of the glasses owing to the differences in ionic radii (76 pm for Li+ and 138 pm for K+). Partially substituting one alkali for another therefore helps to improve high temperature processing of bioactive glasses and can also be used to control or tailor ion release.","PeriodicalId":37354,"journal":{"name":"Biomedical Glasses","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/bglass-2016-0012","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Glasses","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/bglass-2016-0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 17
Abstract
Abstract Two sodium-free mixed alkali series of bioactive glasses based on compositions Bioglass 45S5 and ICIE1, containing lithium and/or potassium as alkali ions, were prepared by a melt-quench route. Thermal properties showed the well-known mixed alkali effect, with glass transition and crystallisation temperatures and the coefficient of thermal expansion going either through a minimum or a maximum for the mixed alkali composition, resulting in a wider processing window. Ion release, by contrast, was controlled by the modifier ionic radius, with ion release rates in dynamic and static dissolution studies increasing for potassium-substituted glasses compared to the composition containing lithium as the only alkali ion. This was caused by pronounced changes in oxygen packing density and molar volume of the glasses owing to the differences in ionic radii (76 pm for Li+ and 138 pm for K+). Partially substituting one alkali for another therefore helps to improve high temperature processing of bioactive glasses and can also be used to control or tailor ion release.
期刊介绍:
Biomedical Glasses is an international Open Access-only journal covering the field of glasses for biomedical applications. The scope of the journal covers the science and technology of glasses and glass-based materials intended for applications in medicine and dentistry. It includes: Chemistry, physics, structure, design and characterization of biomedical glasses Surface science and interactions of biomedical glasses with aqueous and biological media Modeling structure and reactivity of biomedical glasses and their interfaces Biocompatibility of biomedical glasses Processing of biomedical glasses to achieve specific forms and functionality Biomedical glass coatings and composites In vitro and in vivo evaluation of biomedical glasses Glasses and glass-ceramics in engineered regeneration of tissues and organs Glass-based devices for medical and dental applications Application of glasses and glass-ceramics in healthcare.