William C. Lepry, Sophia Smith, L. Liverani, A. Boccaccini, S. Nazhat
{"title":"Acellular Bioactivity of Sol-Gel Derived Borate Glass-Polycaprolactone Electrospun Scaffolds","authors":"William C. Lepry, Sophia Smith, L. Liverani, A. Boccaccini, S. Nazhat","doi":"10.1515/bglass-2016-0011","DOIUrl":null,"url":null,"abstract":"Abstract Recently, sol-gel derived borate glasses (BGs) have shown unprecedented conversion rates to bone-like mineral (hydroxycarbonated apatite). In an effort to explore their potential applications in bone tissue engineering, this study reports on the fabrication and characterization of BG particle incorporated electrospun \"- polycaprolactone (PCL) fibrous composites. The electrospinning technique successfully incorporated PCL fibres with BG particles at 2.5 and 5 w/v%, with the higher BG loading creating a three-dimensional cotton-wool like morphology. Dynamic vapour sorption showed greater extents of mass change with BG content attributable to water sorption, and indicating greater reactivity in the composite systems. In vitro bioactivity was investigated in simulated body fluid for up to 7 days. Scanning electron microscopy, Fourier-transform infrared spectroscopy and xray diffraction indicated apatite formation in the 5 w/v% incorporated composite scaffold, which initiated as early as day 3. In summary, sol-gel derived BGs incorporatedfibrous electrospun PCL composites indicate rapid reactivity and bioactivity with potential applications in mineralized tissue engineering.","PeriodicalId":37354,"journal":{"name":"Biomedical Glasses","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/bglass-2016-0011","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Glasses","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/bglass-2016-0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 23
Abstract
Abstract Recently, sol-gel derived borate glasses (BGs) have shown unprecedented conversion rates to bone-like mineral (hydroxycarbonated apatite). In an effort to explore their potential applications in bone tissue engineering, this study reports on the fabrication and characterization of BG particle incorporated electrospun "- polycaprolactone (PCL) fibrous composites. The electrospinning technique successfully incorporated PCL fibres with BG particles at 2.5 and 5 w/v%, with the higher BG loading creating a three-dimensional cotton-wool like morphology. Dynamic vapour sorption showed greater extents of mass change with BG content attributable to water sorption, and indicating greater reactivity in the composite systems. In vitro bioactivity was investigated in simulated body fluid for up to 7 days. Scanning electron microscopy, Fourier-transform infrared spectroscopy and xray diffraction indicated apatite formation in the 5 w/v% incorporated composite scaffold, which initiated as early as day 3. In summary, sol-gel derived BGs incorporatedfibrous electrospun PCL composites indicate rapid reactivity and bioactivity with potential applications in mineralized tissue engineering.
期刊介绍:
Biomedical Glasses is an international Open Access-only journal covering the field of glasses for biomedical applications. The scope of the journal covers the science and technology of glasses and glass-based materials intended for applications in medicine and dentistry. It includes: Chemistry, physics, structure, design and characterization of biomedical glasses Surface science and interactions of biomedical glasses with aqueous and biological media Modeling structure and reactivity of biomedical glasses and their interfaces Biocompatibility of biomedical glasses Processing of biomedical glasses to achieve specific forms and functionality Biomedical glass coatings and composites In vitro and in vivo evaluation of biomedical glasses Glasses and glass-ceramics in engineered regeneration of tissues and organs Glass-based devices for medical and dental applications Application of glasses and glass-ceramics in healthcare.