Weierstrass semigroups for maximal curves realizable as Harbater–Katz–Gabber covers

IF 0.5 4区 数学 Q3 MATHEMATICS
H. Charalambous, K. Karagiannis, Sotiris Karanikolopoulos, A. Kontogeorgis
{"title":"Weierstrass semigroups for maximal curves realizable as Harbater–Katz–Gabber covers","authors":"H. Charalambous, K. Karagiannis, Sotiris Karanikolopoulos, A. Kontogeorgis","doi":"10.1515/advgeom-2022-0014","DOIUrl":null,"url":null,"abstract":"Abstract We present a necessary and sufficient condition for a maximal curve, defined over the algebraic closure of a finite field, to be realised as an HKG-cover. We use an approach via pole numbers in a rational point of the curve. For this class of curves, we compute their Weierstrass semigroup as well as the jumps of their higher ramification filtrations at this point, the unique ramification point of the cover.","PeriodicalId":7335,"journal":{"name":"Advances in Geometry","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/advgeom-2022-0014","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract We present a necessary and sufficient condition for a maximal curve, defined over the algebraic closure of a finite field, to be realised as an HKG-cover. We use an approach via pole numbers in a rational point of the curve. For this class of curves, we compute their Weierstrass semigroup as well as the jumps of their higher ramification filtrations at this point, the unique ramification point of the cover.
可由Harbater-Katz-Gabber覆盖实现的最大曲线的Weierstrass半群
摘要给出了在有限域的代数闭包上定义的极大曲线可实现为hkg覆盖的充分必要条件。我们在曲线的有理点上使用极点数的方法。对于这类曲线,我们计算了它们的Weierstrass半群以及它们的高分支过滤在这一点(覆盖的唯一分支点)的跳变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Geometry
Advances in Geometry 数学-数学
CiteScore
1.00
自引率
0.00%
发文量
31
审稿时长
>12 weeks
期刊介绍: Advances in Geometry is a mathematical journal for the publication of original research articles of excellent quality in the area of geometry. Geometry is a field of long standing-tradition and eminent importance. The study of space and spatial patterns is a major mathematical activity; geometric ideas and geometric language permeate all of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信