A Distributed Acoustic Sensor with a 120-km Sensing Range Based on a Phase-Sensitive Optical Time-Domain Reflectometer and a Remotely Pumped Erbium-Doped Fiber Amplifier

IF 0.4 4区 工程技术 Q4 ENGINEERING, MULTIDISCIPLINARY
A. S. Dudin, D. R. Kharasov, E. A. Fomiryakov, S. P. Nikitin, O. E. Nanii, V. N. Treshchikov
{"title":"A Distributed Acoustic Sensor with a 120-km Sensing Range Based on a Phase-Sensitive Optical Time-Domain Reflectometer and a Remotely Pumped Erbium-Doped Fiber Amplifier","authors":"A. S. Dudin,&nbsp;D. R. Kharasov,&nbsp;E. A. Fomiryakov,&nbsp;S. P. Nikitin,&nbsp;O. E. Nanii,&nbsp;V. N. Treshchikov","doi":"10.1134/S0020441223050184","DOIUrl":null,"url":null,"abstract":"<p>The operating range of a distributed acoustic sensor based on a phase-sensitive optical time-domain reflectometer has been increased using an erbium-doped fiber amplifier with remote forward pumping. It is shown that by incorporating a single segment of erbium-doped fiber at a distance of 70 km and pumping it from the front end by a 500-mW laser at a wavelength of 1480 nm over the sensing fiber, it is possible to increase the operating range of the reflectometer by 45 km and, thereby, obtain the total operating range as large as 120 km along a standard single-mode fiber.</p>","PeriodicalId":587,"journal":{"name":"Instruments and Experimental Techniques","volume":"66 5","pages":"795 - 801"},"PeriodicalIF":0.4000,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Instruments and Experimental Techniques","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0020441223050184","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The operating range of a distributed acoustic sensor based on a phase-sensitive optical time-domain reflectometer has been increased using an erbium-doped fiber amplifier with remote forward pumping. It is shown that by incorporating a single segment of erbium-doped fiber at a distance of 70 km and pumping it from the front end by a 500-mW laser at a wavelength of 1480 nm over the sensing fiber, it is possible to increase the operating range of the reflectometer by 45 km and, thereby, obtain the total operating range as large as 120 km along a standard single-mode fiber.

Abstract Image

基于相敏光时域反射计和远端泵浦掺铒光纤放大器的120公里探测距离分布式声传感器
采用带远程正向泵浦的掺铒光纤放大器,提高了基于相敏光时域反射计的分布式声传感器的工作范围。结果表明,通过在70 km的距离处加入一段掺铒光纤,并在传感光纤上用波长为1480 nm的500 mw激光从前端抽运,可以将反射计的工作范围增加45 km,从而获得沿标准单模光纤的总工作范围达到120 km。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Instruments and Experimental Techniques
Instruments and Experimental Techniques 工程技术-工程:综合
CiteScore
1.20
自引率
33.30%
发文量
113
审稿时长
4-8 weeks
期刊介绍: Instruments and Experimental Techniques is an international peer reviewed journal that publishes reviews describing advanced methods for physical measurements and techniques and original articles that present techniques for physical measurements, principles of operation, design, methods of application, and analysis of the operation of physical instruments used in all fields of experimental physics and when conducting measurements using physical methods and instruments in astronomy, natural sciences, chemistry, biology, medicine, and ecology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信