Critical review on the degradation mechanisms and recent progress of Ni-rich layered oxide cathodes for lithium-ion batteries

IF 22.2 Q1 CHEMISTRY, MULTIDISCIPLINARY
Qingmeng Gan , Ning Qin , Huimin Yuan , Li Lu , Zhenghe Xu , Zhouguang Lu
{"title":"Critical review on the degradation mechanisms and recent progress of Ni-rich layered oxide cathodes for lithium-ion batteries","authors":"Qingmeng Gan ,&nbsp;Ning Qin ,&nbsp;Huimin Yuan ,&nbsp;Li Lu ,&nbsp;Zhenghe Xu ,&nbsp;Zhouguang Lu","doi":"10.1016/j.enchem.2023.100103","DOIUrl":null,"url":null,"abstract":"<div><p>Ni-rich layered transition metal oxides possess remarkably high capacity and thus are very competitive cathode materials in high-energy lithium-ion batteries (LIBs) for electric vehicles, but encounter the critical problems of fast degradation caused by the highly reactive nickel component. Here in this review we intensively summarize thedegradation mechanism of Ni-rich cathode materials including e.g., residual lithium species, cation mixing, gas generation, surface structure reconstruction, crack, thermal instability, and transition metal dissolution. Furthermore, the state-of-art strategies e.g., new preparation methods, single-crystal, doping, structure design, coating and new binders, to tackle these degradation problem are accounted. This review might be inspiring for better understanding the degradation mechanism and relevant coping approaches of high-energy cathode materials for lithium ion batteries.</p></div>","PeriodicalId":307,"journal":{"name":"EnergyChem","volume":"5 5","pages":"Article 100103"},"PeriodicalIF":22.2000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EnergyChem","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589778023000064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4

Abstract

Ni-rich layered transition metal oxides possess remarkably high capacity and thus are very competitive cathode materials in high-energy lithium-ion batteries (LIBs) for electric vehicles, but encounter the critical problems of fast degradation caused by the highly reactive nickel component. Here in this review we intensively summarize thedegradation mechanism of Ni-rich cathode materials including e.g., residual lithium species, cation mixing, gas generation, surface structure reconstruction, crack, thermal instability, and transition metal dissolution. Furthermore, the state-of-art strategies e.g., new preparation methods, single-crystal, doping, structure design, coating and new binders, to tackle these degradation problem are accounted. This review might be inspiring for better understanding the degradation mechanism and relevant coping approaches of high-energy cathode materials for lithium ion batteries.

锂离子电池用富镍层状氧化物阴极降解机理及研究进展综述
富镍层状过渡金属氧化物具有非常高的容量,是电动汽车高能锂离子电池极具竞争力的正极材料,但由于其高活性的镍成分而面临快速降解的关键问题。本文综述了富镍正极材料的降解机理,包括锂残留、阳离子混合、气体生成、表面结构重构、裂纹、热不稳定性和过渡金属溶解等。此外,还介绍了解决这些降解问题的最新策略,如新的制备方法、单晶、掺杂、结构设计、涂层和新型粘合剂等。本文的研究对进一步认识高能锂离子电池正极材料的降解机理及相应的应对方法具有一定的启发意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
EnergyChem
EnergyChem Multiple-
CiteScore
40.80
自引率
2.80%
发文量
23
审稿时长
40 days
期刊介绍: EnergyChem, a reputable journal, focuses on publishing high-quality research and review articles within the realm of chemistry, chemical engineering, and materials science with a specific emphasis on energy applications. The priority areas covered by the journal include:Solar energy,Energy harvesting devices,Fuel cells,Hydrogen energy,Bioenergy and biofuels,Batteries,Supercapacitors,Electrocatalysis and photocatalysis,Energy storage and energy conversion,Carbon capture and storage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信