EFFECT OF DIFFERENT REMEDIATION METHODS ON THE DEGRADATION RATE OF PETROLEUM HYDROCARBON AND ENZYME ACTIVITY IN PETROLEUM CONTAMINATED SOIL

IF 0.6 4区 环境科学与生态学 Q4 ECOLOGY
F. Xiao, B. Zhou, M. Duan, X. Chen
{"title":"EFFECT OF DIFFERENT REMEDIATION METHODS ON THE DEGRADATION RATE OF PETROLEUM HYDROCARBON AND ENZYME ACTIVITY IN PETROLEUM CONTAMINATED SOIL","authors":"F. Xiao, B. Zhou, M. Duan, X. Chen","doi":"10.15666/aeer/2104_28192832","DOIUrl":null,"url":null,"abstract":". In order to explore the effects of different remediation methods on the degradation rate of total petroleum hydrocarbons and enzyme activity in oil-contaminated soil, a study was conducted using six different treatments, including adding rhamnolipid (S), organic fertilizer (F), degradation bacteria (J), rhamnolipid + degrading bacteria (SJ), organic fertilizer + rhamnolipid (SF), and organic fertilizer + degradation bacteria (FJ), to remediate the oil-contaminated soil. The study examined the changes in the degradation rate of total petroleum hydrocarbons and the activity of four soil enzymes (urease, peroxidase, dehydrogenase, and lipase) at different cultivation times. The results showed that after 60 days of remediation, all treatments improved the degradation rate of total petroleum hydrocarbons in the contaminated soil. The best result was achieved with the FJ treatment, with a degradation rate of 31.72%. The enzyme activity in all treatments was significantly higher than that of the control at different cultivation periods. Statistical analysis showed that the activity of urease, peroxidase, and lipase was significantly negatively correlated with the residual rate of total petroleum hydrocarbons in the contaminated soil. The activity of dehydrogenase was highly significantly negatively correlated with the residual rate of total petroleum hydrocarbons in the contaminated soil.","PeriodicalId":7975,"journal":{"name":"Applied Ecology and Environmental Research","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Ecology and Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.15666/aeer/2104_28192832","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

. In order to explore the effects of different remediation methods on the degradation rate of total petroleum hydrocarbons and enzyme activity in oil-contaminated soil, a study was conducted using six different treatments, including adding rhamnolipid (S), organic fertilizer (F), degradation bacteria (J), rhamnolipid + degrading bacteria (SJ), organic fertilizer + rhamnolipid (SF), and organic fertilizer + degradation bacteria (FJ), to remediate the oil-contaminated soil. The study examined the changes in the degradation rate of total petroleum hydrocarbons and the activity of four soil enzymes (urease, peroxidase, dehydrogenase, and lipase) at different cultivation times. The results showed that after 60 days of remediation, all treatments improved the degradation rate of total petroleum hydrocarbons in the contaminated soil. The best result was achieved with the FJ treatment, with a degradation rate of 31.72%. The enzyme activity in all treatments was significantly higher than that of the control at different cultivation periods. Statistical analysis showed that the activity of urease, peroxidase, and lipase was significantly negatively correlated with the residual rate of total petroleum hydrocarbons in the contaminated soil. The activity of dehydrogenase was highly significantly negatively correlated with the residual rate of total petroleum hydrocarbons in the contaminated soil.
不同修复方法对石油污染土壤中石油烃降解速率及酶活性的影响
. 为探讨不同修复方法对石油污染土壤中总石油烃降解速率和酶活性的影响,采用添加鼠李糖脂(S)、有机肥(F)、降解细菌(J)、鼠李糖脂+降解细菌(SJ)、有机肥+鼠李糖脂(SF)、有机肥+降解细菌(FJ) 6种不同处理对石油污染土壤进行修复。研究了不同栽培时间土壤中总石油烃降解率及脲酶、过氧化物酶、脱氢酶、脂肪酶4种土壤酶活性的变化。结果表明,经过60 d的修复,所有处理均提高了污染土壤中总石油烃的降解率。FJ处理效果最好,降解率为31.72%。各处理在不同培养时期的酶活性均显著高于对照。统计分析表明,脲酶、过氧化物酶和脂肪酶活性与污染土壤中总石油烃残留率呈显著负相关。脱氢酶活性与污染土壤中总石油烃残留率呈极显著负相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Ecology and Environmental Research
Applied Ecology and Environmental Research ECOLOGY-ENVIRONMENTAL SCIENCES
CiteScore
1.40
自引率
14.30%
发文量
104
审稿时长
14 months
期刊介绍: The Journal publishes original research papers and review articles. Researchers from all countries are invited to publish pure or applied ecological, environmental, biogeographical, zoological, botanical, paleontological, biometrical-biomathematical and quantitative ecological or multidisciplinary agricultural research of international interest on its pages. The focus is on topics such as: -Community, ecosystem and global ecology- Biometrics, theoretical- and quantitative ecology- Multidisciplinary agricultural and environmental research- Sustainable and organic agriculture, natural resource management- Ecological methodology, monitoring and modeling- Biodiversity and ecosystem research, microbiology, botany and zoology- Biostatistics and modeling in epidemiology, public health and veterinary- Earth history, paleontology, extinctions, biogeography, biogeochemistry- Conservation biology, environmental protection- Ecological economics, natural capital and ecosystem services- Climatology, meteorology, climate change, climate-ecology. The Journal publishes theoretical papers as well as application-oriented contributions and practical case studies. There is no bias with regard to taxon or geographical area. Purely descriptive papers (like only taxonomic lists) will not be accepted for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信