Gastrodin represses hydrogen peroxide-induced oxidative stress in retinal pigment epithelial cells through p38MAPK/iNOS pathway

IF 4.6 3区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY
X. Zhou, Ximing Zhao
{"title":"Gastrodin represses hydrogen peroxide-induced oxidative stress in retinal pigment epithelial cells through p38MAPK/iNOS pathway","authors":"X. Zhou, Ximing Zhao","doi":"10.15586/qas.v13i4.969","DOIUrl":null,"url":null,"abstract":"Elevated reactive oxygen species (ROS) induce oxidative damage in retinal pigment epithelium (RPE) and con-tribute to the development of age-related macular degeneration (AMD). Gastrodin plays an antioxidant role in distinct diseases, such as epilepsy, cerebral ischemia, Alzheimer’s disease, and cardiovascular diseases. However, the function of gastrodin in AMD remains unclear. Human RPE (ARPE-19) cells were incubated with 300 μM hydrogen peroxide (H2O2) for 24 hours. The results showed that H2O2 decreased cell viability and promoted the cell apoptosis of ARPE-19 cells. H2O2-induced ARPE-19 cells were then treated with different concentrations of gastrodin. Gastrodin increased cell viability of H2O2-induced ARPE-19 cells, suppressed the cell apoptosis of H2O2-induced ARPE-19 cells with reduced B-cell lymphoma (Bcl)-2 like protein (Bax), and enhanced Bcl-2. The levels of ROS were enhanced, malondialdehyde (MDA) was up-regulated, and superoxide dismutase (SOD) and glutathione (GSH) were down-regulated in H2O2-induced ARPE-19 cells. However, gastrodin reduced the lev-els of ROS and MDA and elevated SOD and GSH in H2O2-induced ARPE-19 cells. Furthermore, H2O2-induced increase of inducible nitric oxide synthase (iNOS) and p-p38 proteins in ARPE-19 was reversed by gastrodin. In conclusion, gastrodin exerted antiapoptotic and antioxidant capacities to protect against H2O2-induced oxidative stress in RPE, thereby acting as a potential agent for managing AMD.","PeriodicalId":20868,"journal":{"name":"Quality Assurance and Safety of Crops & Foods","volume":"1 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2021-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quality Assurance and Safety of Crops & Foods","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.15586/qas.v13i4.969","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Elevated reactive oxygen species (ROS) induce oxidative damage in retinal pigment epithelium (RPE) and con-tribute to the development of age-related macular degeneration (AMD). Gastrodin plays an antioxidant role in distinct diseases, such as epilepsy, cerebral ischemia, Alzheimer’s disease, and cardiovascular diseases. However, the function of gastrodin in AMD remains unclear. Human RPE (ARPE-19) cells were incubated with 300 μM hydrogen peroxide (H2O2) for 24 hours. The results showed that H2O2 decreased cell viability and promoted the cell apoptosis of ARPE-19 cells. H2O2-induced ARPE-19 cells were then treated with different concentrations of gastrodin. Gastrodin increased cell viability of H2O2-induced ARPE-19 cells, suppressed the cell apoptosis of H2O2-induced ARPE-19 cells with reduced B-cell lymphoma (Bcl)-2 like protein (Bax), and enhanced Bcl-2. The levels of ROS were enhanced, malondialdehyde (MDA) was up-regulated, and superoxide dismutase (SOD) and glutathione (GSH) were down-regulated in H2O2-induced ARPE-19 cells. However, gastrodin reduced the lev-els of ROS and MDA and elevated SOD and GSH in H2O2-induced ARPE-19 cells. Furthermore, H2O2-induced increase of inducible nitric oxide synthase (iNOS) and p-p38 proteins in ARPE-19 was reversed by gastrodin. In conclusion, gastrodin exerted antiapoptotic and antioxidant capacities to protect against H2O2-induced oxidative stress in RPE, thereby acting as a potential agent for managing AMD.
天麻素通过p38MAPK/iNOS途径抑制过氧化氢诱导的视网膜色素上皮细胞氧化应激
活性氧(ROS)升高可诱导视网膜色素上皮(RPE)氧化损伤,并促进年龄相关性黄斑变性(AMD)的发展。天麻素在癫痫、脑缺血、阿尔茨海默病和心血管疾病等多种疾病中发挥抗氧化作用。然而,天麻素在AMD中的作用尚不清楚。人RPE (ARPE-19)细胞用300 μM过氧化氢(H2O2)孵育24小时。结果表明,H2O2降低ARPE-19细胞活力,促进细胞凋亡。然后用不同浓度的天麻素处理h2o2诱导的ARPE-19细胞。天麻素提高h2o2诱导的ARPE-19细胞的细胞活力,抑制h2o2诱导的ARPE-19细胞凋亡,降低b细胞淋巴瘤(Bcl)-2样蛋白(Bax),增强Bcl-2。过氧化氢诱导的ARPE-19细胞ROS水平升高,丙二醛(MDA)水平上调,超氧化物歧化酶(SOD)和谷胱甘肽(GSH)水平下调。然而,天麻素降低了h2o2诱导的ARPE-19细胞的ROS和MDA水平,升高了SOD和GSH水平。此外,h2o2诱导的ARPE-19诱导型一氧化氮合酶(iNOS)和p-p38蛋白的升高被天麻素逆转。综上所述,天麻素发挥抗凋亡和抗氧化能力,保护RPE免受h2o2诱导的氧化应激,从而作为治疗AMD的潜在药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.60
自引率
7.50%
发文量
61
审稿时长
1 months
期刊介绍: ''Quality Assurance and Safety of Crops & Foods'' is an international peer-reviewed journal publishing research and review papers associated with the quality and safety of food and food sources including cereals, grains, oilseeds, fruits, root crops and animal sources. It targets both primary materials and their conversion to human foods. There is a strong focus on the development and application of new analytical tools and their potential for quality assessment, assurance, control and safety. The scope includes issues of risk assessment, traceability, authenticity, food security and socio-economic impacts. Manuscripts presenting novel data and information that are likely to significantly contribute to scientific knowledge in areas of food quality and safety will be considered. ''Quality Assurance and Safety of Crops & Foods'' provides a forum for all those working in the specialist field of food quality and safety to report on the progress and outcomes of their research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信