C

A. W. Cox, C. Grady, H. Hammel, J. Hornbeck, R. Russell, M. L. Sitko, B. Woodgate
{"title":"C","authors":"A. W. Cox, C. Grady, H. Hammel, J. Hornbeck, R. Russell, M. L. Sitko, B. Woodgate","doi":"10.1515/9783110429176-004","DOIUrl":null,"url":null,"abstract":"Cosmological inference becomes increasingly difficult when complex data-generating processes cannot be modeled by simple probability distributions. With the ever-increasing size of data sets in cosmology, there is an increasing burden placed on adequate modeling; systematic errors in the model will dominate where previously these were swamped by statistical errors. For example, Gaussian distributions are an insufficient representation for errors in quantities like photometric redshifts. Likewise, it can be difficult to quantify analytically the distribution of errors that are introduced in complex fitting codes. Without a simple form for these distributions, it becomes difficult to accurately construct a likelihood function for the data as a function of parameters of interest. Approximate Bayesian computation (ABC) provides a means of probing the posterior distribution when direct calculation of a sufficiently accurate likelihood is intractable. ABC allows one to bypass direct calculation of the likelihood but instead relies upon the ability to simulate the forward process that generated the data. These simulations can naturally incorporate priors placed on nuisance parameters, and hence these can be marginalized in a natural way. We present and discuss ABC methods in the context of supernova cosmology using data from the SDSS-II Supernova Survey. Assuming a flat cosmology and constant dark energy equation of state, we demonstrate that ABC can recover an accurate posterior distribution. Finally, we show that ABC can still produce an accurate posterior distribution when we contaminate the sample with Type IIP supernovae.","PeriodicalId":92199,"journal":{"name":"Edinburgh medical and surgical journal","volume":"20 1","pages":"338 - 340"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/9783110429176-004","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Edinburgh medical and surgical journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/9783110429176-004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cosmological inference becomes increasingly difficult when complex data-generating processes cannot be modeled by simple probability distributions. With the ever-increasing size of data sets in cosmology, there is an increasing burden placed on adequate modeling; systematic errors in the model will dominate where previously these were swamped by statistical errors. For example, Gaussian distributions are an insufficient representation for errors in quantities like photometric redshifts. Likewise, it can be difficult to quantify analytically the distribution of errors that are introduced in complex fitting codes. Without a simple form for these distributions, it becomes difficult to accurately construct a likelihood function for the data as a function of parameters of interest. Approximate Bayesian computation (ABC) provides a means of probing the posterior distribution when direct calculation of a sufficiently accurate likelihood is intractable. ABC allows one to bypass direct calculation of the likelihood but instead relies upon the ability to simulate the forward process that generated the data. These simulations can naturally incorporate priors placed on nuisance parameters, and hence these can be marginalized in a natural way. We present and discuss ABC methods in the context of supernova cosmology using data from the SDSS-II Supernova Survey. Assuming a flat cosmology and constant dark energy equation of state, we demonstrate that ABC can recover an accurate posterior distribution. Finally, we show that ABC can still produce an accurate posterior distribution when we contaminate the sample with Type IIP supernovae.
C
我们建立了球状星团(GCs)在形成过程中的随机预富集和自富集模型。gc在形成之初具有由其周围原云的预富集决定的初始金属丰度,但在形成过程中也可能经历内部的自富集。金属丰度的随机变化是由于超新星数量有限而产生的。我们构建了预富集和自富集联合效应的解析公式,并使用蒙特卡罗模型验证了该模型准确地封装了实际gc的平均金属丰度和金属丰度分布。预测的金属丰度仅由自富集引起的扩散,是模型的一个稳健预测,比实际gc之间观察到的扩散要小得多。这一结果排除了自富集作为大多数gc中金属含量的重要贡献者,留下预富集作为可行的替代方案。然而,对于质量远高于106 M的星系团来说,自富集是很重要的,这些星系团的质量足以在没有任何外部压力约束的情况下容纳相当一部分SN喷射物。这个过渡点与质量-金属丰度关系(MMR,“蓝色倾斜”)在许多大型星系中金属贫乏的星团序列中出现的质量很好地对应。因此,我们认为自我充实是MMR的主要驱动因素。我们的模型的其他预测是,在质量最高的团簇中,团簇之间的金属丰度扩散减小;如果红色气相色谱序列可以追溯到类似的高质量,那么它也应该显示出更温和的质量-金属丰度趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信