{"title":"Transient Heat and Mass Transfer of Micropolar Fluid between Porous Vertical Channel with Boundary Conditions of Third Kind","authors":"D. Doh, M. Muthtamilselvan, D. Prakash","doi":"10.1515/ijnsns-2015-0154","DOIUrl":null,"url":null,"abstract":"Abstract An investigation of heat and mass transfer characteristics of unsteady free convective flow of viscous incompressible micropolar fluid between the vertical porous plates in the presence of thermal radiation is carried out in the present work. The fluid is considered to be grey, absorbing–emitting but non scattering medium and the Cogley–Vincent–Gilles formulation is adopted to simulate the radiation component of heat transfer. The resulting system of equations is solved numerically with Crank–Nicolson implicit finite difference method. The effects of various physical parameters such as transient, micropolar parameter, radiation parameter, Reynolds number, Schmidt number, heat and mass transfer Biot numbers on the velocity, temperature and concentration field are discussed graphically.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ijnsns-2015-0154","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijnsns-2015-0154","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 7
Abstract
Abstract An investigation of heat and mass transfer characteristics of unsteady free convective flow of viscous incompressible micropolar fluid between the vertical porous plates in the presence of thermal radiation is carried out in the present work. The fluid is considered to be grey, absorbing–emitting but non scattering medium and the Cogley–Vincent–Gilles formulation is adopted to simulate the radiation component of heat transfer. The resulting system of equations is solved numerically with Crank–Nicolson implicit finite difference method. The effects of various physical parameters such as transient, micropolar parameter, radiation parameter, Reynolds number, Schmidt number, heat and mass transfer Biot numbers on the velocity, temperature and concentration field are discussed graphically.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.