Forecasting emergency department arrivals using INGARCH models.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Juan C Reboredo, Jose Ramon Barba-Queiruga, Javier Ojea-Ferreiro, Francisco Reyes-Santias
{"title":"Forecasting emergency department arrivals using INGARCH models.","authors":"Juan C Reboredo, Jose Ramon Barba-Queiruga, Javier Ojea-Ferreiro, Francisco Reyes-Santias","doi":"10.1186/s13561-023-00456-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Forecasting patient arrivals to hospital emergency departments is critical to dealing with surges and to efficient planning, management and functioning of hospital emerency departments.</p><p><strong>Objective: </strong>We explore whether past mean values and past observations are useful to forecast daily patient arrivals in an Emergency Department.</p><p><strong>Material and methods: </strong>We examine whether an integer-valued generalized autoregressive conditional heteroscedastic (INGARCH) model can yield a better conditional distribution fit and forecast of patient arrivals by using past arrival information and taking into account the dynamics of the volatility of arrivals.</p><p><strong>Results: </strong>We document that INGARCH models improve both in-sample and out-of-sample forecasts, particularly in the lower and upper quantiles of the distribution of arrivals.</p><p><strong>Conclusion: </strong>Our results suggest that INGARCH modelling is a useful model for short-term and tactical emergency department planning, e.g., to assign rotas or locate staff for unexpected surges in patient arrivals.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10612291/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1186/s13561-023-00456-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Forecasting patient arrivals to hospital emergency departments is critical to dealing with surges and to efficient planning, management and functioning of hospital emerency departments.

Objective: We explore whether past mean values and past observations are useful to forecast daily patient arrivals in an Emergency Department.

Material and methods: We examine whether an integer-valued generalized autoregressive conditional heteroscedastic (INGARCH) model can yield a better conditional distribution fit and forecast of patient arrivals by using past arrival information and taking into account the dynamics of the volatility of arrivals.

Results: We document that INGARCH models improve both in-sample and out-of-sample forecasts, particularly in the lower and upper quantiles of the distribution of arrivals.

Conclusion: Our results suggest that INGARCH modelling is a useful model for short-term and tactical emergency department planning, e.g., to assign rotas or locate staff for unexpected surges in patient arrivals.

Abstract Image

Abstract Image

Abstract Image

使用INGARCH模型预测急诊科到达人数。
背景:预测患者到达医院急诊部门对于应对激增以及医院急诊部门的有效规划、管理和运作至关重要。目的:我们探讨过去的平均值和过去的观测值是否有助于预测急诊科的每日患者到达情况。材料和方法:我们通过使用过去的到达信息和考虑到到货波动的动态。结果:我们记录了INGARCH模型改进了样本内和样本外预测,特别是在到达分布的上分位数和下分位数方面。结论:我们的研究结果表明,INGARCH模型是一个有用的短期和战术急诊科规划模型,例如,为患者到达的意外激增分配轮值表或定位工作人员。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信