{"title":"Improving customer loyalty evaluation methods in the grocery retail industry: a data mining approach","authors":"Samira Khodabandehlou, A. Niknafs","doi":"10.1504/IJECRM.2016.10003155","DOIUrl":null,"url":null,"abstract":"Evaluating customer loyalty is an issue, which has gained a lot of attention in recent years due to modern facilities and tools for gathering and analysing data. These evaluations have had great and significant effects on improving business processes. Accordingly, data mining methods present significant capabilities. On the other hand, common methods for evaluating customer loyalty have been developed only based on three components, including recency (R), frequency (F) and monetary (M). In this study, it has been tried to add some other effective factors including number of bought products, number of returned products, amount of discount and delivery delay to the analysis in order to measure the impact of each one of them on the quality of the evaluation. The ideas and opinions of experts and the current available literature on the subject have been used as criteria for assessing quality. While implementing the methods, machine-learning tools such as artificial neural networks and support vector machine have been utilised. The results show that the method where the four factors are simultaneously fed into the RFM presents the highest possible accuracy in evaluating customer loyalty and among the learning models, the MLP-boosting method provides the highest accuracy.","PeriodicalId":39480,"journal":{"name":"International Journal of Electronic Customer Relationship Management","volume":"42 1","pages":"158"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electronic Customer Relationship Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJECRM.2016.10003155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Business, Management and Accounting","Score":null,"Total":0}
引用次数: 1
Abstract
Evaluating customer loyalty is an issue, which has gained a lot of attention in recent years due to modern facilities and tools for gathering and analysing data. These evaluations have had great and significant effects on improving business processes. Accordingly, data mining methods present significant capabilities. On the other hand, common methods for evaluating customer loyalty have been developed only based on three components, including recency (R), frequency (F) and monetary (M). In this study, it has been tried to add some other effective factors including number of bought products, number of returned products, amount of discount and delivery delay to the analysis in order to measure the impact of each one of them on the quality of the evaluation. The ideas and opinions of experts and the current available literature on the subject have been used as criteria for assessing quality. While implementing the methods, machine-learning tools such as artificial neural networks and support vector machine have been utilised. The results show that the method where the four factors are simultaneously fed into the RFM presents the highest possible accuracy in evaluating customer loyalty and among the learning models, the MLP-boosting method provides the highest accuracy.
期刊介绍:
The aim of IJECRM is to provide an international forum and refereed reference in the field of electronic customer relationship management (ECRM). It also addresses the interaction, collaboration, partnership and cooperation between small and medium sized enterprises (SMEs) and larger enterprises in a customer relationship. More innovative analysis and better understanding of the complexity involved in a customer relationship are essential in today''s global businesses. Therefore, manuscripts offering theoretical, conceptual, and practical contributions for ECRM are encouraged. Topics covered include: -Electronic customer relationship management (ECRM) -CRM strategy, marketing, technology and software -Custom marketing and sales management -Customer lifetime value, loyalty, satisfaction, behaviour, databases -Issues for implementing CRM systems/solutions for CRM problems -Tools for capturing customer information, managing/sharing customer data -Partner relationship management, strategic alliances/ partnerships -Business to business market (B2B), business to consumer market (B2C) -Enterprise resource planning (ERP) -Supply chain dynamics and uncertainty, supplier relationship management (SRM) -E-commerce customer relationships on the internet -Supply chain management, channel management, demand chain management -Manufacturing, logistics and information technology/systems -Supplier and distribution networks, international issues -Performance measurement/indicators, research, modelling