The Use of Linear Mixed Models to Estimate Variance Components from Data on Twin Pairs by Maximum Likelihood

P. Visscher, Beben Benyamin, I. White
{"title":"The Use of Linear Mixed Models to Estimate Variance Components from Data on Twin Pairs by Maximum Likelihood","authors":"P. Visscher, Beben Benyamin, I. White","doi":"10.1375/twin.7.6.670","DOIUrl":null,"url":null,"abstract":"Abstract It is shown that maximum likelihood estimation of variance components from twin data can be parameterized in the framework of linear mixed models. Standard statistical packages can be used to analyze univariate or multivariate data for simple models such as the ACE and CE models. Furthermore, specialized variance component estimation software that can handle pedigree data and user-defined covariance structures can be used to analyze multivariate data for simple and complex models, including those where dominance and/or QTL effects are fitted. The linear mixed model framework is particularly useful for analyzing multiple traits in extended (twin) families with a large number of random effects.","PeriodicalId":75270,"journal":{"name":"Twin research : the official journal of the International Society for Twin Studies","volume":"7 1","pages":"670 - 674"},"PeriodicalIF":0.0000,"publicationDate":"2004-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1375/twin.7.6.670","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Twin research : the official journal of the International Society for Twin Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1375/twin.7.6.670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract It is shown that maximum likelihood estimation of variance components from twin data can be parameterized in the framework of linear mixed models. Standard statistical packages can be used to analyze univariate or multivariate data for simple models such as the ACE and CE models. Furthermore, specialized variance component estimation software that can handle pedigree data and user-defined covariance structures can be used to analyze multivariate data for simple and complex models, including those where dominance and/or QTL effects are fitted. The linear mixed model framework is particularly useful for analyzing multiple traits in extended (twin) families with a large number of random effects.
利用线性混合模型用极大似然法估计双胞胎数据的方差成分
摘要本文证明了在线性混合模型框架下,孪生数据方差分量的极大似然估计是可以参数化的。标准统计包可用于分析简单模型(如ACE和CE模型)的单变量或多变量数据。此外,专门的方差成分估计软件可以处理谱系数据和用户定义的协方差结构,可以用于分析简单和复杂模型的多变量数据,包括那些优势和/或QTL效应拟合的模型。线性混合模型框架对于分析具有大量随机效应的扩展(双胞胎)家族中的多个性状特别有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信