Flexural behaviors assessment of Hidden boundary Rib precast concrete Slab (HRS) with bi-tensional prestress: Experiments, analyses, and formulations

IF 2.2 4区 工程技术 Q2 ENGINEERING, CIVIL
P. Nguyen, Jeong-Hoi Kim, Jong-Byung Oh, Youngshik Park, Dongkyun Lee
{"title":"Flexural behaviors assessment of Hidden boundary Rib precast concrete Slab (HRS) with bi-tensional prestress: Experiments, analyses, and formulations","authors":"P. Nguyen, Jeong-Hoi Kim, Jong-Byung Oh, Youngshik Park, Dongkyun Lee","doi":"10.12989/SEM.2021.79.6.737","DOIUrl":null,"url":null,"abstract":"This study presents overviews of a first proposed Hidden boundary one-way Rib precast concrete Slab, so-called HRS. In order to investigate bending behaviors of the novel structural system, three specimens manufactured in factory are tested by corresponding static loading protocol experiments. Four-points bending tests in both cases of the presence and absence of topping concrete slabs are performed. Results of the experiment scrutinize how each structural component such as rebars, topping concretes, strand wires can affect the bending behavior of HRS. As regards the main originality of this paper, approximate equations showing flexural strengths for a partially prestressed concrete flagged section, like HRS, are proposed in accordance with several current global and local design standards such as ACI 318, EN: Eurocode 2, PCI, AASHTO 2002, KCI 2012 and CSA A.23. Moreover, this study provides another predicting approach using finite element analysis of MIDAS FEA for analytical performances of specimens. Through these experimental and analytical results, the general characteristic of HRS may be observed and studied for realization in the field of prestressed precast concrete industries for construction.","PeriodicalId":51181,"journal":{"name":"Structural Engineering and Mechanics","volume":"79 1","pages":"737"},"PeriodicalIF":2.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Engineering and Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/SEM.2021.79.6.737","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 2

Abstract

This study presents overviews of a first proposed Hidden boundary one-way Rib precast concrete Slab, so-called HRS. In order to investigate bending behaviors of the novel structural system, three specimens manufactured in factory are tested by corresponding static loading protocol experiments. Four-points bending tests in both cases of the presence and absence of topping concrete slabs are performed. Results of the experiment scrutinize how each structural component such as rebars, topping concretes, strand wires can affect the bending behavior of HRS. As regards the main originality of this paper, approximate equations showing flexural strengths for a partially prestressed concrete flagged section, like HRS, are proposed in accordance with several current global and local design standards such as ACI 318, EN: Eurocode 2, PCI, AASHTO 2002, KCI 2012 and CSA A.23. Moreover, this study provides another predicting approach using finite element analysis of MIDAS FEA for analytical performances of specimens. Through these experimental and analytical results, the general characteristic of HRS may be observed and studied for realization in the field of prestressed precast concrete industries for construction.
具有双张预应力的隐边界肋预制混凝土板(HRS)的弯曲行为评估:实验,分析和公式
本研究概述了首次提出的隐藏边界单向肋预制混凝土板,即所谓的HRS。为了研究新型结构体系的弯曲性能,对3个工厂制作的试件进行了相应的静力加载试验。在有和没有浇顶混凝土板的两种情况下进行四点弯曲试验。实验结果仔细检查了每个结构部件,如钢筋,顶部混凝土,股绞线如何影响HRS的弯曲行为。关于本文的主要创意,根据当前的几个全球和当地设计标准(如ACI 318, EN: Eurocode 2, PCI, AASHTO 2002, KCI 2012和CSA a .23),提出了显示部分预应力混凝土标志截面(如HRS)抗弯强度的近似方程。此外,本研究还提供了另一种利用MIDAS有限元分析对试件分析性能进行预测的方法。通过这些试验和分析结果,可以观察和研究HRS的一般特性,以便在建筑预应力预制混凝土工业领域实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Structural Engineering and Mechanics
Structural Engineering and Mechanics 工程技术-工程:机械
CiteScore
3.80
自引率
18.20%
发文量
0
审稿时长
11 months
期刊介绍: The STRUCTURAL ENGINEERING AND MECHANICS, An International Journal, aims at: providing a major publication channel for structural engineering, wider distribution at more affordable subscription rates; faster reviewing and publication for manuscripts submitted; and a broad scope for wider participation. The main subject of the Journal is structural engineering concerned with aspects of mechanics. Areas covered by the Journal include: - Structural Mechanics - Design of Civil, Building and Mechanical Structures - Structural Optimization and Controls - Structural Safety and Reliability - New Structural Materials and Applications - Effects of Wind, Earthquake and Wave Loadings on Structures - Fluid-Structure and Soil-Structure Interactions - AI Application and Expert Systems in Structural Engineering. Submission of papers from practicing engineers is particularly encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信